

Energy in Buildings and Communities Programme

Energy Efficiency and Behavior Workshop

Annex 66 Definition and Simulation of Occupant Behavior in Buildings

Da Yan Tsinghua University, China

Mar 12, 2015

Background

• Large gaps between field data and simulation result

Source: NBI report 2008 Energy Performance of LEED For New Construction Buildings

Figure ES- 4: Measured versus Design EUIs All EUIs in kBtu/sf

Background

• OB has significant influence on building energy use

The statistics energy consumption of cooling system in different apartments of one residential building in Beijing,2006

Impact of OB on energy consumption

Stefano Corgnati, POLITO

What kind of thermal insulation level would be adapted

in Shanghai residential building?

Life Style Mode		U Value of building Fabric			
	Description	W/(m²⋅K)	Wall	Roof	Window
Mode1	Full time full space heating	1990s	2	1.7	4.7
Mode2	Full time full space heating when Occupied	Current	1.5	1.1	3.2
Mode3	Full time for kids , heating before sleeping for parents	Japan	0.45	0.45	4.65
Mode4	heating before sleeping				

OB is a key factor in the evaluation of building technology

- VRV system consumes less energy in both Beijing and Shanghai area
- But, VRV's COP is at the same level of central cooling system

CWC system: use AC system almost all rooms at the same time

VRF system: use AC system in a part time part space way

Page 10

The VRF system consumes less energy not due to higher COP, but provide the users more authority to control and adjust their rooms.

Background

Interaction between OB with system

- Employees are encouraged to wear a tie in their office during winter in Hong Kong, to have lower indoor temperature setting to save energy
- Nevertheless...
- Due to internal heat gains, the office continuously supply cooling during winter time
- The lower indoor set point will induce to higher energy consumption
- There are quite a lot integration and interaction between building fabric, occupant behavior and mechanical system
- We need a methodology to quantitatively measure the occupant behavior's effect on total energy usage in building

Importance and Urgency

- OB is a **Key factor** for design optimization, energy diagnosis and performance evaluation, and also building energy simulation
- Limited understanding or inadequate over-simplification on OB;
- In-depth quantitative analysis urgently needed;
- Over 20 groups all over the world studying OB individually
- Lack of consensus in common language, in good experimental design, and in modeling methodologies.
- An international cooperation is extremely important for both knowledge gaining and data sharing

Importance and Urgency

IEA-EBC-ANNEX66 Definition and Simulation of Occupant Behavior in Buildings

www.ANNEX66.org

Research Target

- Identify quantitative definition, description and classification of OB
- Develop effective simulation methodologies of OB
- Integrated OB models with building energy simulation tools
- Demonstrate the OB models in design, evaluation, operation management and policy making by case studies

Research Target

- Quantitative methods & common language for OB
 description and simulation
- <u>Develop a scientific framework for OB quantitative</u> <u>definition and simulation methodologies</u>

Participants

- 24 Nations, 69 institutions
- 114 participants, plus 13 participants want to be kept informed
- University, research institute, software company, design consultant company, operation manager, system control company
- ASHRAE has confirmed to join this project, IBPSA, REHVA and CIBSE are considering participation

Scope

Focus on how OB physically and quantitatively affect on building performance simulation

Challenges

Stochastic process

Zhu, 2011/5-6

Wang,2011/7

Page 23

Personal level

Building level

Page 24

Diversity

How Do Occupants Adjust to Thermal Comfort Issues?

Other responses include: complain, contact facilities department, keep blankets and sweaters within reach, and open windows.

IFMA 2009 HVAC Survey of IFMA members in US and Canada with 452 responses from 3357 samples

Diversity

 A so called "typical persons" and their distribution are essential to connect between the academic research and policy making

Complexity

Questionnaire survey results in Chengdu

- Behavior may be triggered by multiple factors for an individual
- And behavior would interactive with each others

Technical approach

Targeting Building types:

Residential buildings & Office buildings

Page 28

ST-A Occupant presence and movement model

Occupant's presence and movement is strongly connected with Space, Time and Events

A set of coherent occupant presence models are demanded for different application purposes

Example of Occupant Movement Model

Characteristic parameters for movement

0.2

Weekday schedule	Event	Valid Period	Characteristic parameters of occupants			
	Go to office	7:00~8:30	Mean morning a	arrival time	7:45	
	Leave for lunch	11:30~12:30	Mean leavir	ng time	12:00	
	Return after lunch	12:30~13:30	Mean retur	n time	13:00	
	Get off work	17:00~21:00	Mean night dep	arture time	18:00	
Working time 8:00~17:00 Lunch time 12:00~13:00	Walk around	8:00~17:00	In own office In other rooms In outside	proportion of time 0.93 0.06 0.01	mean sojourn time in room 3h 10min 10min	
	Meetings	8:00~17:00	See table for meeting rooms			
	Close	23:00	Closing t	ime	23:00	
Type of meetin room	g Occupied time proportion	Mean duration p time	er Minimum attendees	Me	Meeting type	

Meeting room

1h

2

Group meeting

Mixed

2/3

1/3

Demo. of simulation results

ST-B Action model in residential buildings

Occupant's actions are influenced by environmental and physical parameters in a stochastic way

ST-B Action model in residential buildings

State based → Action Based

Action based models has more advantage to exhibit the relationship between OB phenomenon and physical driven force

ST-C Action model in commercial buildings

Lighting energy consumption

Higher possibility of interaction and negotiation among occupants in commercial buildings

ST-D Integration with simulation software

ST-D Integration with simulation software

Essential to integrate the OB models with BEMs to exhibit the influence of OB on building energy and performance

ST-D Integration with simulation software

Develop flexible, sustainable, robust module for simulation

Page 38

ST-E Applications of OB models

To exhibit OB's influence on comfort, environment, energy usage and technology adaptability, improve applications by case studies & guidelines

Outlook of Occupant Behavior Research

Work plan

Page 41

Outcomes

	Outcomes	Target Audience	
1	Standard definition, description and classification of occupant behaviour in building		
2	Systematic measurement approach, simulation modelling and validation methodology	Building Energy Researchers Energy Modellers Simulation Software Developers	
3	Occupant Behavior Database with data of different temporal and spatial resolution		
4	Software to simulate OB, integrated with a building thermal and energy model	Building Designers Energy Saving Evaluators	
5	Case studies and guidelines to demonstrate applications of the new OB definitions and models	System Operators Energy Policy Makers	

Activities

Seminar at ASHRAE Seattle Conference International Workshop for New ANNEX About 100 people attended the seminar Aug. 23rd, 2013, Paris, 24 participant

1st expert meeting in Hong Kong March 12 to 14, 2014, 39 participants

2nd expert meeting in Nottingham August 4th to 6th, 53 participants

Will be held in LBNL on March 30 to April 1, 2015

Page 43

Summary

- OB has great influence on building energy usage and also technology evaluation
- There are still lack of <u>quantitative methods</u>, scientific criteria and <u>common language</u> for OB description and simulation
- ANNEX 66 is focused on setting up <u>a scientific framework</u> for OB definition, description, simulation and applications in the coming four years efforts
- We are looking forward to cooperation and working with the teams all over the world to devote into Occupant Behavior Simulation research

Thank you for your attention!

http://annex66.org/ yanda@tsinghua.edu.cn

Page 45