

Data-driven modelling of behaviour in energy planning models

Dr. Luis Munuera International Energy Agency Iuis.munuera@iea.org

www.iea.org

The global picture – heat use in buildings

International Energy Agency

Ca. 30% of final energy use in the UK – what strategy to decarbonise?

International Energy Agency

Why behaviour matters here

- Retrofit
- Age of stock/physical constraints
- Heterogeneity (stock, market, techs)
- Heat grade/thermal comfort

Low carbon solutions (and policies) untested

Why look at making energy planning tools better -

- Widely used tools for policy support
- Traditionally based on least-cost modelling approaches:
 - Objective function
 - Decision variables <u>adoption</u> and <u>use</u>
 - Constraints
- Technology-rich, perfect foresight, perfect markets...
 - Legacy from a different era

...but for emerging (and most) policy questions it's critical to model non-cost behaviour well

Typical policy support tools in use

Energy Agency

iea

Building sector models – rich representation of the residential sector, not great for strategy

Key behavioral parameters – and how modellers usually approach these

- Hidden or intangible costs add a term to the objective function
- High time-preference for money high hurdle rate for adoption
- Different sensitivity from different social group
- Distress and other purchasing behaviour natural and accelerated replacement rates
- Price sensitivity elasticities

On technology adoption - Modelling Preferences

- Stated preference surveys strong biases
- Revealed preferences
 - The preferences of consumers/industry can be revealed by their behaviour
 - Can be used to reveal hurdle rates, construct distributions
- Basis in utility maximisation, where technique attempts to quantify the utility function of consumers
- Hedonic Regression

On technology use - new, emerging data sources offer key opportunities

- Real-world data before/after intervention AMI, field trials, other monitoring
- Demand response programmes
- NEED-style datasets! Econometric analysis of combined impacts of interventions, rebound effects

Highly powerful – but who should own?

Data from AMI, field trials – heat pumps, boilers, micro-CHP, solar thermal, some types of insulation

Energy Agency

International Energy Agency

Heat storage and load shifting potential

International Energy Agency

So how to incorporate this data richness for strategy formulation?

Brief description of approach

- Model 3 different approaches to behaviour
- Spatially explicit, infrastructure and technology-rich* representation of real-world systems
- Integer framework model every individual intervention on each housing segment and impact on supply
 - Possible to assess impact of a combination of measures (e.g. as data availability progresses - many measures not additive)
- Time- and load-shifting limited by empirical data
- Build-up constrained based on revealed preferences

Flat

Semi-

Time domain:

Hourly temporal representation of service demands

Peak

Mid-Season

Summer

Winter

+ simple thermal comfort model

Spatial domain:

Explicit characterisation of housing stock, current level of adoption, maximum 'physical' bounds by archetype

International

Zones with real-world intervention data

Integer framework to track deployment in each scenario

International Energy Agency

iea

CCC consistently revising assumptions on build-up rates, but no link to formal modelling Solid, cavity wall insulation indicators HP adoption rates (FE) International Energy Agency

iea

'Big data' has big value - but how to model more fundamental, radical behavioral change prospectively?

TBC: Smart grids roadmap

luis.munuera@iea.org

Thank you