

## **Smart Grid Cyber-Resilience**

Prof. Dr. Sebastian Lehnhoff

## **Three Major Trends**

... that influence the stability of KRITIS Energy

- 1. Conversion of the energy system, e.g.
  - > Many smaller systems, system-critical as a whole
  - > Competition and new business models
  - > Interconnectivity, flexibilization through digitalization
- 2. Digitization trends, including
  - > Internet of Things (IoT): several billion devices on the Internet and connected to our power grid (televisions, baby monitors, alexa, etc.)
  - > Smart Services, Cloud, Outsourcing, Artificial Intelligence, Big Data,...
- 3. Susceptibility to new effects, e.g.
  - > Occurrence of "classic" IT challenges (errors, update management, interactions)
  - > Sophisticated cyber-attacks (partly supported by states)





## Energy Systems are Complex Cyber-Physical Systems

Diverse tasks in heterogeneous, distributed (sub)systems under different responsibilities

OFFIS

- Forecast of network conditions,
- Optimized reactive power management,
- Detection of anomalies in power and communication networks.



- Monitoring of the operating states,
- Automation yellow traffic light phase,
- decentralised system services.

A wide range of entry-points into a safety-critical infrastructure...

There are two types of companies: those that have been hacked and those who don't know that they have been hacked."

John T. Chambers.



## This also applies to "our" Energy Systems

Cyber-attacks on the power system in the Ukraine, 23.12.2015 (and subsequently in 2016)



- > Blackout in Ukraine due to hacker attack
- > 3 Power utilities affected
- > Operative manipulation of the automation systems and decoupling of several transformer stations from the network
- > Several months of preparation
- > Power Systems are high-value targets: how to reliably detect vulnerabilities?



## Vulnerabilities

...to critical dependencies and cyber-attacks

#### Critical attack vectors in energy systems (non exhaustive)

- > Reconnaissance, data theft
- > IT/OT-hacking: remote access and control
- > Data-spoofing: bad data injection, data manipulation, excitation of dynamic instabilities/sliding modes

#### **Existing monitoring systems**

- > Intrusion/anomaly detection ightarrow abnormal network traffic
- > State estimation → measurement outliers (statistical), varying accuracy of measurements

# Not sufficient for detecting critical situations in digitalized energy systems!





### State Assessment based on Trust Facets







- > All conceivable attack vectors manifest themselves in a combination of (violated) trust facets
- > What to do with this multivariate assessment?
  - > E.g. substitute measurements with historical/simulated values?
  - > Do nothing?
- > What is the worst that could happen?

. . .

## The Concept of Adversarial Resilience Learning



Competing agents learn by interacting on a shared environment



Prof. Dr. S. Lehnhoff | OFFIS | EGRD Workshop 2019

#### Use Case: Resilient Systems Analysis and Training Variations of ARL



#### Analysis – only Attacker

- > Test laboratory for resilient systems
- > Attacker explores vulnerabilities
- > "Conquest" of the system
- > Attack vectors/results as a basis for analysis



## What about the obvious ethical dilemma?

- > ARL as "assault weapon"?
- > License as a solution?
- > Making "laws of robotics" inherent by transfer learning?

#### **Training – Attacker and Defender**

- > AI for automated operation
- > Resilience strategies of the overall

## Attacker trains defender

system

- > Attacks: not only malicious, but also natural environmental factors
  - > forecast deviations
  - Damage caused by accidents etc.

### Demo: Attack on a Power System

Prevention of (sub-)system takeover as a secondary problem







## **Conclusion and Outlook**

Digitalization is indispensable for flexible energy systems (and highly vulnerable at the same time)

#### Traditional means/methods have been proven to miss:

- > Vulnerabilities to interdependent/dynamic failures
- > Specialized/targeted attacks

#### Multivariate impact analysis necessary

- > Basis for (automated) decision-making during operation ("always compromised")
- > Risk-based investments in countermeasures?

## ARL as an AI-based game-theoretic approach to vulnerability testing (CPS modelling)

> Equilibria more relevant (and achievable) than "absolute" safety

#### There is no way back from digitalized energy systems!

> Most promising answer against highly specialized/targeted attacks is Operational Flexibility (on-line change of system characteristics) for Cyber-Resilience!









Supported by:

Smart Grid Cyber-Resilience Lab

> on the basis of a decision by the German Bundestag

for Economic Affairs and Energy