

Choice of Flexibility sources towards a 100% renewable based Nordic energy system

System Resiliency and Flexibility IEA EGRD Vienna, May 2019

project coordinator:

Klaus Skytte

Klsk@dtu.dk

Energy Economics and Regulation DTU, Department of Technology, Management and Economics, Denmark

Towards 100% RES and Carbon Neutrality **100** Flex4RES

The Clean Energy Transition

Goals and RE-thinking of the energy infrastructure

Example: Wind share in Denmark

Wind production share in DK-West

Flex4RES

7-2012

23 December 2017: 1 hour with 139%25 December 2017: 1 day with average of 109%

Political target 2050: The total energy supply based on renewable energy incl. heat, gas, transport, industry, etc.

Need for Flexibility

Present Flexibility

Adequate Flexibility Indicator AFI = 1/(1+CV[p])

where

CV[*p*] = sigma[*p*]/E[*p*] is the coefficient of variation of prices

AFI between 0 and 1

- 0 = no flexibility; infinitely volatile prices
- 1 = perfectly adequate flexibility; constant prices

Nord Pool market prices 2018

Flexibility definition

influence of variable supply

Negative values indicate large influence of variable demand

Flexibility in electricity infrastructures **U** Flex4RES

Flexibility in coupled infrastructures

Flexibility by coupling

Transmission

Electricity/gas/heat Transport/storage

Coupling	Incentives for flexibility	Price variations	Driver	Impact
Geographical coupling	Price differences between regions	$\checkmark + \checkmark \Rightarrow \checkmark$	Different technology mix	Increased imports and exports
Sector coupling	Price differences between energy sources and technologies	$\checkmark \Rightarrow \checkmark$	Increased business opportunities	Increased national demand

Interconnection Common frameworks developed over the last 3 decades

Sector coupling Sector specific frameworks

Sector coupling

Electrification as source of flexibility

Nordic Barriers

- EU framework (Clean Energy for All Europeans)
- Nordic region greener than EU
- Traditional energy policy framework still dominate

Main barriers

B1 Insufficient market signals for some stakeholders;

B2 Uneven frameworks for different renewable energy resources.

Policy recommendations (Market-based policy framework):

R1 **Create a level playing field** for all RES technologies across sectors

through consistent fiscal policies;

R2 Implement electricity **grid tariffs** which allow market signals for flexibility to reach the end-users;

R3 Dynamic taxation of electricity (e.g. restructuring levies and taxes);

R4 Encourage VRE operators to act flexibly using short-term market-based incentives;

R5 Abolish RES support during negative price periods;

R6 Enhance electrification by removing the limitations on using electricity for heating;

R7 Tackle investment risks in flexible individual heating through new financing and private ownership models.

Policy Brief

Flex4RES Flexble Nordic Energy System

Better Policies Accelerate Clean Energy Transition

Focus on energy system flexibility

Nordic Energy Research

Nordic commonalities with regional diversity

Recommendations	Related barrier(s)	Denmark	Norway	Sweden	Finland	Estonia	Latvia	Lithuania
Rı	B2							
R2	Bı							
R ₃	B1,B2							
R4	B1,B2							
R ₅	B1,B2							
R6	B2							
R ₇	B2							

B1 = Insufficient market signals for some stakeholders; B2 = Uneven frameworks for different renewable energy resources

• All foresee an increase in VRE

- Common barriers, but specific conditions need consideration
- All have information deficit on flexibility and lacking policy awareness

Summary and next steps

Transition to a 100% RES-based Nordic energy system is possible

- Present system already relative flexible
- Policy awareness on flexibility in addition to traditional environmental and cost related issues.
- System instead of individual sector approaches
- Soft infrastructure (Regulation/economics/institutions) as important as hard infrastructure
- Develop adequate incentives

Next steps / research questions

- Impact assessments/quantification
- Low hanging fruits / socio-economic least-costs solutions
- Technology and climate/environmental impact
- Pathways Regulatory, technical and sustainable
- Policy recommendations

Questions?

www.Flex4RES.org

Klaus Skytte

Head of Energy Economics and Regulation DTU, Denmark <u>klsk@dtu.dk</u>

Extra slides

Flex4RES **Scenarios** High sector coupling Sector coupling Both transmission FULL ENERGY Electricit (electrifying heat, gas, transport) CO-OPERATION CO-OPERATION and sector coupling **R1: Level playing field** 3 R2/3: Tariffs & taxes No targeted Targeted incentives < ➤ incentives for flexibility for flexibility EXTENDED ELECTRICITY MARKET Interconnection ELECTRICITY MARKET CO-OPERATION CO-OPERATION Investments in Existing transmission transmission capacity capacity 2030 2030 - 205 15 GW Reference scenario 10 GW 5 GW - 1 GW BAU Low sector coupling

Scenario / model runs

District Heating in the Baltics/Nordics Flex4RES

Source: Euroheat, 2015

District heating is widely used in most Baltic/Nordic countries and thus represents a flexibility source of considerable magnitude which is only partly exploited today by the power market

Choice of heat supply -at different electricity prices

ullet

