Integration of electric transportation with smart grids

Kari Mäki

“Will a smarter grid lead to smarter end users – or vice versa”
IEA EGRD Meeting
June 3rd 2015
Oslo, Norway
Contents

• VTT briefly
• Aspects of electric transportation
• Charging systems
• Smart grids
• Integrated approaches
• Conclusions
VTT briefly
VTT – Technology for business

VTT Technical Research Centre of Finland Ltd is the leading research and technology company in the Nordic countries. We provide expert services for our domestic and international customers and partners, and for both private and public sectors. We use 4,000,000 hours of brainpower a year to develop new technological solutions.

We develop new smart technologies, profitable solutions and innovative services. We cooperate with our customers to produce technology for business and build success and well-being for the benefit of society.

VTT is a non-profit organisation and a crucial part of Finland's innovation eco-system. VTT operates under the mandate of the Ministry of Employment and the Economy.

- Turnover 277 M€ (VTT Group 2014), personnel 2,600 (VTT Group 1.1.2015)
- Unique research and testing infrastructure
- Wide national and international cooperation network

VTT’s status as performer of R&D work
VTT’s research projects

1. Commercial activities
   - Commercial activities performed according to direct demand from customers.
   
   **Impact:**
   - Building competitiveness for VTT’s customers through world-class research and innovation services

2. Joint projects
   - Research projects jointly funded by VTT, companies, research financers (*) and/or other research parties.
   
   **Impact:**
   - More efficient technology transfer
   - Foundation for new innovations and political decision-making

3. Self-financed research
   - Technology-based strategic research projects
   
   **Impact:**
   - Developing VTT’s own competitiveness and acquiring knowledge and expertise to meet future customer needs

(*) R&D funding possibilities for example
- Tekes (The Finnish Funding Agency for Technology and Innovation)
- EU projects
VTT’s strategic research portfolio

Bioeconomy transformation
• Sustainable use and refining of bio-based raw materials
• Industrial biotechnology and green chemistry
• Process and manufacturing technologies
• Bioeconomy business ecosystems

Low-carbon economy
• Energy efficient solutions for industry, built environment, and transport
• Renewable energy sources
• Nuclear energy: safety and waste management
• Energy systems and modelling

Clean environment
• Clean water cycles on demand
• Industrial ecology and life cycle design
• Waste refineries, material recovery, and recycling
• Substitute material solutions

Horizontal research: Business and services – Innovation methods and policies – Safety and security – User and customer understanding

Digital world
• High-performance microsystems and sensing solutions
• Printed intelligence
• Scalable digital service economy
• Internet of Things (IoT)

Resource efficient production systems
• Eco-efficient machines
• Resource efficient processes
• Simulation based design
• Global production and services

Health and wellbeing solutions
• Diagnostics
• Food products and health
• ICT for health
• User-driven spaces and environments
VTT has integrated research capabilities for electric vehicle R&D

- **Vehicle laboratory & eBus development platform**
- **Battery laboratory & module development platform**
- **Climatic chambers for component testing**
- **Battery simulator / power source for chassis dynamometer & heavy-duty battery pack tester**
... as well as Smart Grid research environments

- Integration between electric vehicle, battery and smart grid labs is in progress!
Aspects of electric transportation
Questions to be asked

- From the car owner’s or fleet operators’ point of view:
  - Which vehicles provide best fuel and overall economy?
  - Ensuring high reliability, availability and productivity of the system

- From the point of view of decision makers and those responsible for transport services and procurement:
  - Which vehicles actually deliver low emissions (regulated, CO₂)?

- And the practical issues…
  - How should the charging infrastructure for EV’s be organised?
  - How to facilitate the adoption of the new technologies?
Why are electric buses attractive?

- City buses are the ideal case for e-mobility:
  - Fixed route length
  - Fixed schedule
- High utilisation rate
  - Low energy cost
  - Possibility for profitability
- No local emissions
- Quiet
- High passenger comfort
- Multimodality potential (rail, tram)
- What about the total cost of ownership?
Total ownership costs of electric buses – Espoo case

Ref: M. Pihlatie et al, Fully electric city buses – the viable option, IEEE IEVC 2014, Florence 17-19 December, DOI: 10.1109/IEVC.2014.7056145
Effect of daily mileage - sensitivity

Euro 6 diesel

eBus Type 2 LTO

Message to take: it is economical to maximise the mileage of the electrical vehicle fleet
What about other modes of urban transport?

- Techno-economic viability for electrification of commercial fleets is highest (high utilisation rate of capital-intensive components)
  - Buses are the backbone of many public transport systems
  - Urban deliveries, logistics and freight
  - Utility vehicles and machinery (refuse, maintenance, ..)
  - Taxis and other passenger vehicles
- Huge impact of urban transport on local air quality
- Fuel efficiency is important for operational costs
- Potential synergies and value to be addressed
  - Shared charging infra
Charging systems
Charger is the interface

- Charger has a crucial role as it defines the interface between electric network and e-mobility application
  - Defines quality impacts and behaviour towards grid
  - Defines information exchange and functionalities
  - Impacts the lifetime of the battery
  - Provides the communication interface
  - Manages the most important safety concerns
# Charging concepts

<table>
<thead>
<tr>
<th>Charging concept</th>
<th>Infrastructure costs</th>
<th>Vehicle costs</th>
<th>Operation costs</th>
<th>Concept feasibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Overnight charging in the depot</td>
<td>Low, Chargers only in the depot</td>
<td>High, Large battery capacity</td>
<td>High, low battery lifetime, high energy consumption</td>
<td>Possible in demonstrational phase</td>
</tr>
<tr>
<td>2. Overnight charging + fast charging during the day</td>
<td>Moderate, Chargers both in the depot and terminals</td>
<td>Moderate, slightly smaller battery capacity</td>
<td>Moderate, slightly longer battery lifetime, additional costs if extra buses and drivers needed</td>
<td>Possible in demonstrational phase, parking space in bus terminals limits in wider scale use</td>
</tr>
<tr>
<td>3. Opportunity charging (automatic high-power charging)</td>
<td>High, expensive charging systems in terminals</td>
<td>Moderate, small battery, expensive technology depending on system</td>
<td>Low, no changes into normal bus operations</td>
<td>Feasible only as a large system where there are enough vehicles to take advantage of the investment</td>
</tr>
</tbody>
</table>
Potential charging methods

Charging with cable & socket
- Manual operation
- Partly standardised, low power

Inductive charging
- Contactless
- Automatic
- Can reach high powers
- Not standardised

Pantograph charging
- Automatic
- Can reach high powers
- To be standardised
Opportunity charging

- Charging in bus terminals and at some points along the bus line
- Battery is always used in the middle area of state of charge →
  - Extended battery lifetime
  - Extra capacity always available in case that one charging would fail
- Multiple random-operated quick-charging points across grid: needs good integration and planning
Smart Grids
Smart Grid

National SGEM research program by CLEEN, Finland.
Key drivers for Smart Grids

- **Accommodating** renewable energy resources
- **Flexibly** integrating and controlling variety of active components
- **Enabling** platform for new businesses
- **Introduction** of electric mobility
- **Providing** better reliability and quality of service
- **Better** involving individual users
Key component: Integrated communication

IEA Technology Roadmap: Smart Grids.
High expectations for energy storages

Storage capacity vs. time scale:
- Milliseconds: Supercapacitor, SMES
- Seconds: Flywheel, Lead-acid
- Minutes: Ni-Cd, PV output smoothing
- Hours: Customer energy optimization, Vanadium redox, NAS, Large-scale island operation
- Days: SMES, Pumped hydro

Energy storage technologies:
- Supercapacitor
- SMES
- Flywheel
- Lead-acid
- Ni-Cd
- Vanadium redox
- NAS
- Pumped hydro

Customer power quality improvement:
- Large-scale island operation
- Small-scale island operation

Network power quality improvement:
- Gusty wind output smoothing
- PV output smoothing

Customer energy optimization:
- Gusty wind output smoothing
- PV output smoothing

Energy management:
- Control Power Regulation
- Power Quality
- Spinning Reserves
- Black Start
- Load Following
- Integration of Non Predictable Sources
- Peak Shaving
- Investment Deferral
- Electric Energy Time Shift

Energy smoothing:
- AC Power Smoothing
- DC circuit power smoothing
- MV network power quality

Energy transformation:
- AC/DC
- DC/AC
- Generator transformer
- Customer meter

Network:
- HV/MV
- MV/LV
- PV unit
- LV network power quality
- LV network island operation
- Customer energy optimization
- DC power smoothing
- Customer power quality
Demand response – involving the customer side in control chains

- Controllability of loads offers new tool for grid management and market operation purposes
- Essential to understand the customer behavior and processes
Electric mobility integration in smart grids

- **Storage** on wheels...
  ... or rather a perfect means of **Demand response**?
  - with **communication** and control implemented!

- Controllable EV charging can be utilized intelligently towards energy markets, local grid as well as individual customer
  - Straightforward use for load control
  - Communication and control interfaces available
  - Efficient localization of control actions
  - Integration with PV output power
  - Customer level optimization methods
  ... BUT always in line with the actual need: **Mobility (customer needs / availability)**
  ... AND respecting **Battery lifetime**
Electric mobility integration in smart grids

- Distribution network planning perspectives
  - Traditional “grid as a service channel” approach:
    - Interface ordered and dimensioned according to peak power
    - Very robust way of managing
  - ...or...
  - More flexible co-operation approaches:
    - Controllable charging power according to network status
    - Avoidance of peak powers
    - Economic synergies
  - Network regulation plays an important role in managing charger interfaces
Electric mobility integration in smart grids

- On the system level, the actual impact of EVs is not crucial
  - Local problems can be faced especially in weak LV grids

5 million EVs in Nordic countries; worst and best scenarios
Flexibility has a value..

- Controllable flexibility will have an increasing value
- Aggregating individual EVs can form significant entities
- Control can be based on local logics or communication
  - Communicating and managing masses of small EVs still challenging

Fingrid reserve types

- Process
  - Automatic products
  - Manual products
- FCR
  - FCR-D
  - FCR-N
- FRR
  - FRR-A
  - FRR-M
- RR
  - Replacement Reserve
  - NA
  - NA
Integrated approaches
Opportunity charging planning

- Integrated approach on opportunity charging
  - Bus lines and operational data
  - Electric bus data
  - Distribution network data
- Tools have been developed to enable joint studies
Opportunity charging planning

- An application based on GIS system has been developed
- Utilizes existing data for traffic, bus lines, electric bus, distribution network etc.
- For integrated planning of electric bus infrastructure
Opportunity charging planning in real circumstances

- Objective: Dimension a battery for opportunity charged eBus operating in HSL bus line 11 (in Espoo) and discuss about the cost and lifetime

- Assumptions
  - Charger in Tapiola, Espoo is 250 kW, 8 minutes of charging after each roundtrip
  - One roundtrip is 20 km in distance
  - The eBus consumes 1 kWh/km during summer and 1,5 kWh/km during winter
Aggregator business logics
Aggregator business logics

1. Message from network operator: "Reduce load or increase generation
   Area: x
   Power: 5 MW
   Time: following 4 hrs"

2. Aggregator identifies the customers on the area and their control possibilities

3. Aggregator calculates the possibilities of fulfilling the network operator request

4. Response to the network operator (confirmed or denied)

5. Control signals to the required customers

6. Monitoring of the customer state – reallocation of control if needed. Control service on area is maintained same during reallocation.

7. Releasing customer controls after the network service time is fulfilled or service released by the network operator.
Aggregator business logics: the bus depot case

- Assume an operator of bus depot charging for a fleet of electric buses in a big city
  - Buses are mainly charged through the night
  - Charging can be controlled as long as battery lifetimes are not affected and buses are available in the morning as agreed
  - The operator also supplies the charging energy for fleet operator
Aggregator business logics: the bus depot case

- Now the depot operator can offer different services:
  - Ancillary services like voltage control, quality improvement, dip mitigation for local distribution network operator
  - Balancing services for energy retailers, aggregators and balance responsible parties
  - Services for system operator, for instance system balancing market bidding or fast reserves
  - Smoothing services for producers of intermittent renewable energy
  - Conduct it’s own operation on energy market for retailing the charging energy

… as long as constrictions of battery lifetime, vehicle availability, etc. are respected!
Voltage control case simulated

Apros

Charging manager

EV battery model

Charger model

Network model

Voltage measurement

Stepwise updated values

Running mean calculation

Threshold exceed

Droop curve

Monitoring EV variables

Distribution to EVSEs

Signal reception

20 kV grid connection point

Distribution transformer

LV BUS

Control logics

Lines

Residential loads

EV charger and battery

20:0.4 kV

0

0 8 :4 0 0 9 :2 0 1 0 :0 0 1 0 :4 0 1 1 :2 0 1 2 :0 0 1 2 :4 0 1 3 :2 0 1 4 :0 0 1 4 :4 0

380

385

390

395

400

405

410

A B C D E
Development of joint simulation environments

- Main challenges
  - Different objectives, different timescales, different levels of details
  - Interfaces and syncing of data
  - Correct level of modelling for different cases
  - Infrastructure boundaries – who is the eventual user?

- Main attributes
  - Scalable, flexible, easy to use
  - Provides platform for new tools
Conclusions
Conclusions

- Electric transport systems are fast emerging
  - Electric city buses highly interesting
- Putting transport and power systems in the same study gives an interesting integrated approach
- EV charging sets especially local challenges, on system-wide level impacts seem more minor
- EV charging represents a good means of demand response
- A charging operator could offer different services
  - Potential for new business models
TECHNOLOGY FOR BUSINESS