
DC Smart Grids with more benefits

EGRD 2015, Session 5, June 4th, Oslo

The Hague University of Applied Sciences THE HAGUE **Electrical Engineering (TIS-Delft)** Focusgroup 'Energy in the build environment' Ing. Pepijn van Willigenburg

Contents

- 1 Personal introductions
- 2 Introduction to DC
- 3 Advantages of DC & new business models
- 4 Case study: Privacy protection in DC Grids
- 5 Discussion
- 6 Contact information

Personal Introductions: Pepijn van Willigenburg

- Bachelors Degree in Management of Technology
- Independent Contractor working on Electrical Energy, Greenhouse Horticulture & Education
 - Researcher and project manager @ THU
 - Proposal manager @ Dutch DC Foundation
- From 2009 working on and in DC projects for THU

Personal Introductions: a bit more personal

Live in Utrecht with girlfriend and two children

 Looking for another opportunity to visit my niece, living in Ulsteinvik with husband and children →

Programme Introductions

- Educational and Research Programme
 'DC: Road to its full potential'
- Long term goals
 - Improvement of Curriculum
 - Staff Professionalization
 - Industry partnerships (e.g. Siemens, ABB)
- Research WP 3.2
 - Can we redesign an electrical grid with smaller, smart, perhaps autonomous building blocks?

Introduction to the topic: Direct Current or DC

- 1880's Edison vs Westinghouse & Tesla
 - AC Won: low cost distribution with transformer
 - Beginning of the AC age
- 1947: The 'invention' of the transistor
 - Starting point of power electronics
 - 21st Century: starting point of a DC era?

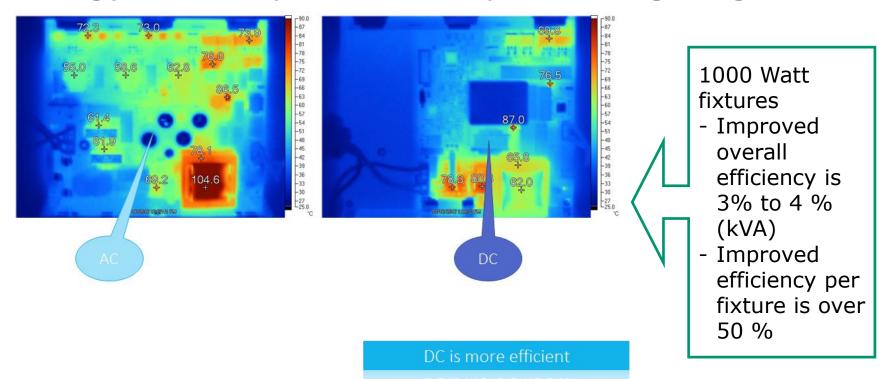
DC: Advantages

An overview:

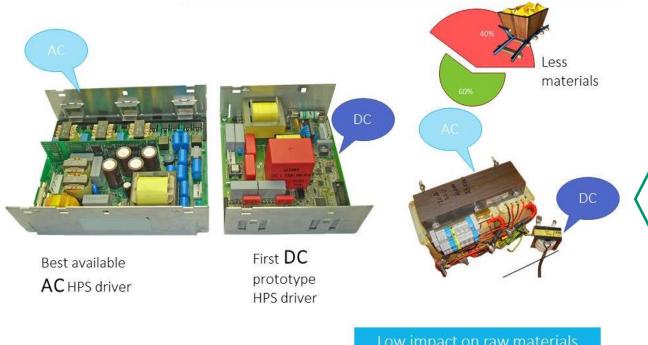
- Primary electricity usage: 3% 5% more efficient in end-user applications, more in system overall
- Raw materials usage: less materials
- Lower labour costs for installation and maintenance
- Communication is standard, no expensive option
- A longer lifespan
- USB as the world's first standardized plug!

High Voltage Direct Current (HVDC)

- Over 1500 Volt
- For long distance point-to-point transmission
- Multipoint connections are due
 - Delft University of Technology has a working set-up in scaled down dimensions


Low Voltage Direct Current (LVDC)

- Under 1500 Volt (ideally 350 Volt DC in-house)
- LED lights, HPS lighting
- Solid state devices and handheld electronics

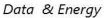


Energy efficiency in for example HPS Lighting

Raw materials: less copper and iron

1000 Watt fixtures

- Same scale!
- DC fixture is smaller, with less components
- For 1 hectare 1500 kg's of copper wiring less!


The rise of USB – the end of 15 different AC plugs?

DC is a fact of life

Unnoticed DC-infiltration

- World wide standard
 - "More USB plugs than people"
- Pushed by EU Roadmap
- Will power PC's en TV's

USB Power Delivery

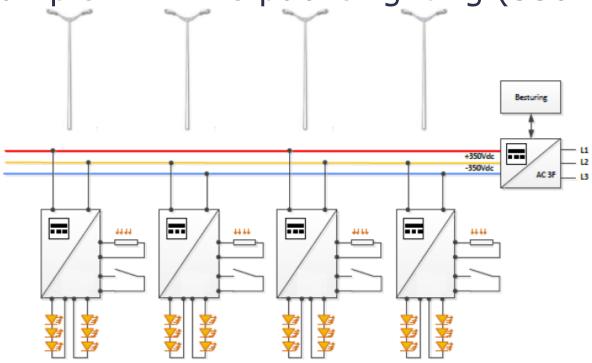
- $100~W_e$ power already
- Implemented in USB-C (Apple, Samsung)
- More power in the future?

DC: New business cases

Discussed and other examples indicate both a

- lower CAPEX <u>and</u>
- lower OPEX

when investing in DC technologies. That is for products in early stages of product maturity as well!


Usually: OPEX (labour, kVA's) are lowered or replaced with CAPEX (automation, ICT)

DC: New business cases

Example: LED-DC public lighting (350 Volt system)

	AC system	DC system	Savings
Copper cables	100%	39%	61%
LED driver + conversion	100% (AC-DC)	95% (DC-DC)	5%

DC: New business cases

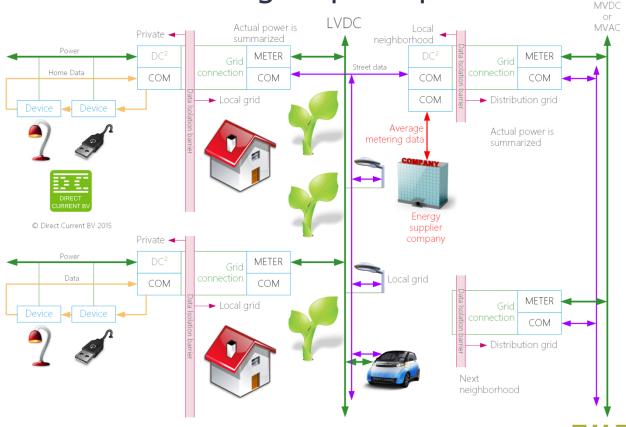
Why should governments invest in AC infrastructure, when DC infrastructure is coming soon and offering so many benefits?

Comparisson: Developing and 3rd world countries leap-frogged fixed line telephone and have adopted cellular telephone straightaway.

Privacy by Design's principles

- Proactive measures and integration of technical principles in the design of the system,
- Default settings to enhance privacy,
- Full functionality and life cycle protection,
- Transparency and user centered implementation

Principles are now part of the proposed EU Data Protection Regulation (Albrecht 2015, EC 2015)


DC-distribution grid principles

- Freedom of Choice
- Upper level system levels communicate availability
- Lower level systems compare supply and demand and act accordingly
- Control of private property / space with physical barriers and an energy management system operated by the end-user
- Local-for-Local: use locally generated electricity locally

DC-distribution grid principles

Business interests versus Public Interest:

- Should a commercial offer from your energy supplier be transparent? Is a personalized energy-offer, fitted to your historic energy usage, transparent? Is it comparable to offers for neighbors, friends and relatives?
- From a conceptual point of view, freedom of choice requires competition. Competitors need to be comparable. What are characteristics of 'power' or electricity?
- Commodities usually rely on pricing mechanisms for main differentiation, services are in 'small print', very difficult to compare, especially for nonspecialists.

Discussions

DC is a fact of life All the things we and work on DC

Discussions

Questions please?

Thanks!

To Direct Current b.v. for images on slides 1 and 16 http://www.directcurrent.eu/en/vision

To Dutch DC Foundation for images on slides 9, 10, 11 and 19

http://www.dcfoundation.org/foundation/objectives

To Eneco Group for image and data on slide 13

http://www.citytec.nl

Contact Information

The Hague University of Applied Sciences Faculty Technology, Innovation & Society Rotterdamseweg 137

2628 AL Delft

p.vanwiligenburg@hhs.nl

+31-15-2606384

+31-6-48279102

