

Dr. Matt Kennedy

Prosumers

IEA EGRD Workshop, Copenhagen 12.10.17

Introducing the IERC

- An Irish Government supported, collaborative energy research centre that responds to industry-driven energy challenges within the commercial and residential sectors
- Translate industry needs into research objectives, delivering impact from research excellence
- Hosted in the Tyndall National Institute = 550 fulltime researchers

- Introducing Prosumers and PV systems
- Role of Incentives and Enabling Policies
- Policy Makers and Key Drivers
- Potential Future Strategies

Research Context:

Four country case studies (FR, DE, UK and US)

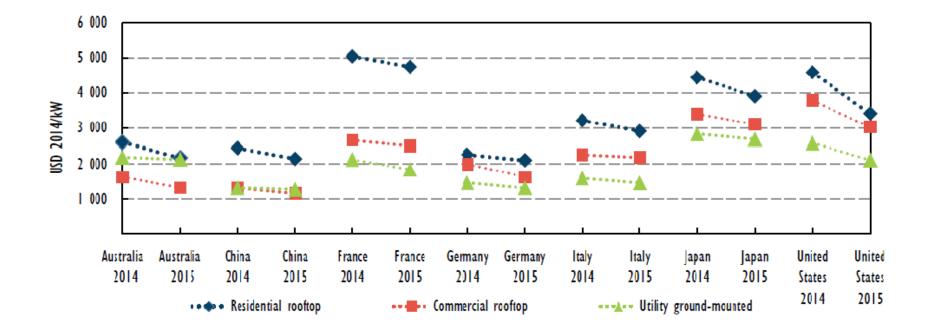
- Case study objectives
 - Actions concerning onsite PV in the commercial sector
 - Primary drivers behind PV prosumers
 - Conditions and barriers are holding back widespread adoption of PV for self-consumption
- Building types selected based on which ones had strong potential to emerge as prosumers. Criteria included:
 - Good available roof space
 - Relatively steady and large daily load profiles
 - Common building type within the country

RESIDENTIAL PROSUMERS -DRIVERS AND POLICY OPTIONS (RE-PROSUMERS)

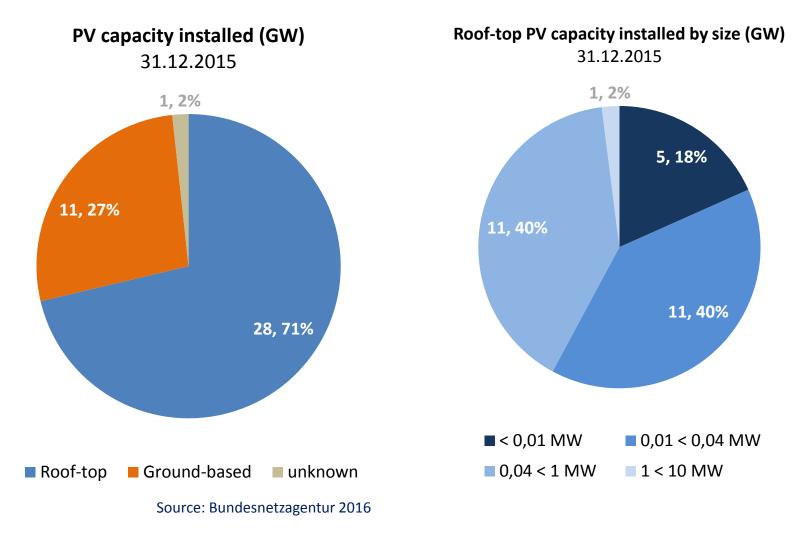
Remote Prosumers – Preparing for deployment ROOF-TOP SOLAR PY PROSUMERS IN REMOTE AREAS AND ISLANDS

Tapping the Potential of Commercial Prosumers DRIVERS AND POLICY OPTIONS (RE-COM-PROSUMERS)

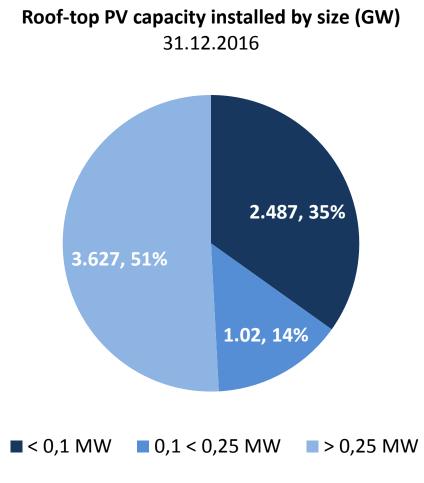
IEA-RETD


A 'commercial prosumer'

- Different countries track and classify PV data in different ways and there is no standard definition
- Some countries (e.g. US) track commercial systems specifically, where other countries (e.g. France and Germany) primarily track systems based on the feed-in tariff they receive.
- Commercial prosumers:
 - Are interconnected behind the meter
 - 10 kW 250 kW

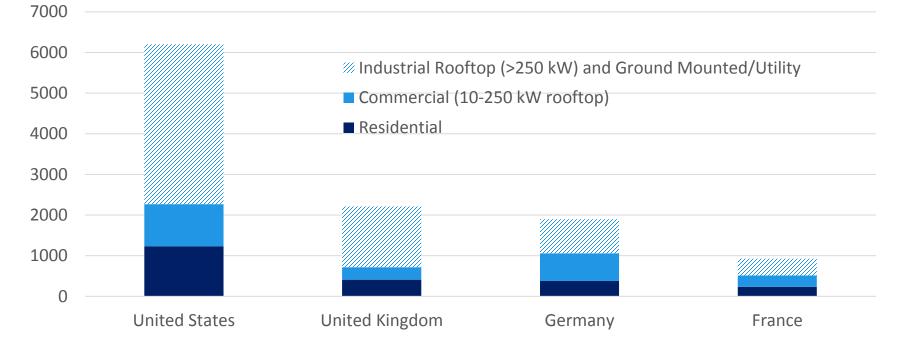

The cost to install PV has fallen dramatically, and is likely to continue to do so

Market example: Germany


Roof-top PV can have an important share in some PV markets (71 % in Germany, thereof 58 % < 40 kW)

Market example: France

In France the share of projects below 100 kW is at 35 %



Source: https://www.pv-magazine.com/2017/03/01/frances-pv-capacity-tops-7-13-gw/

Roof-top PV Share

New PV Capacity Installed in 2014 in MW

Share of roof-top PV market does not mean that those installations are "prosumers" that benefit from self-consumption- often built for FiT and electricity export

Sources: SEIA 2014 (US); DECC Solar PV Deployment 2015 (UK); Bundesnetzagentur 2015 (DE), Syndicat des Énergies Renouvelables

- Introducing Prosumers and PV
- Role of Incentives and Enabling Policies
- Policy Makers and Key Drivers
- Potential Future Strategies

Prosumer Revolution ?

Neither German nor French market are booming

45 kumulierte Leistung GW_p neu installierte Leistung 40 35 30 25 20 15 quaschning.de 10 www.volker 5 0 1994 1995 1996 2004 2005 2006 2007 2009 2009 2010 2011 2013 2013 2013 993 1997 1998 1999 2000 2003 066 991 1992 2001 2002 ഹ 201 2010

PV Installations in Germany

New installations in 2016:

Only 1.5 GW PV in Germany

Only 559 MW PV in France (lowest value since 2009)

Possibly linked to lack of policy

Incentives and regulations

- Mass non-incentivized prosumers are unlikely to arrive in the near-term
- Incentives (e.g. FITs) above the retail electricity rate have driven the prosumer revolution to date
- Mass prosumer expansion will require policies that compensate most/all of PV output (net metering, below-retail FITs, etc.)
- Without support schemes, storage will be required which adds cost
- Non-incentivized mass defection from grids not to be expected soon.

- Introducing Prosumers and PV
- Role of Incentives and Enabling Policies
- Policy Makers and Key Drivers
- Potential Future Strategies

A complex picture of drivers and national specifics influence the different stakeholder groups

STAKEHOLDERS

ERS	Behavioural Drivers
DRIVI	
	Technology Drivers
[
	National Conditions

A complex picture of drivers and national specifics influence the different stakeholder groups

STAKEHOLDERS

Prosumers	Govern- ments	Grid Operators	Generators	Consumers	PV Supply Chain
Economic Drivers					

 Behavioural Drivers

 Image: Construction of the self-construction of the self-cons

National Conditions

Key Drivers

Drivers can have enabling or constraining effects on prosumer uptake...

-	Constrain prosumers		Enable prosumers
0	High PV system costs	\$	Low PV system costs
Economic drivers	Low electricity prices and fixed charges		High electricity prices and volumetric rates
Eco dr	Low self-consumption ratio		High self-consumption ratio
	Low insolation		High insolation
Beha- vior	Hassle factor, lack of trust in technology, policy uncertainty		Environmental awareness, energy autonomy, "cool" factor
-0	n/a		PV technology breakthroughs
Techno- logy	Additional storage costs	+	Improved self-consumption ratio
	Additional EV costs		Improved self-consumption ratio
Nat. cond	Decreasing energy demand		Available roof space, tenant ownership

... Stakeholder interest = difficult to predict and poorly understood

	Constrain prosumers		Enable prosumers
	Decreased revenue for TSOs and DSOs, grid investments to accommodate prosumers		Prosumers can reduce T&D investments
lders	Reduced generator revenues	,∎	Prosumers create new business opportunities
Stakeholders	Increased retail electricity rates for other consumers		Economic, social, and environmental benefits created for all consumers
	Reduced tax income, potential for stranded assets		Increased resilience of energy supply; improved energy security

Other national conditions also impact prosumer development

Торіс	Examples
Available roof space	Rooftop space not a near-term limitation; rooftop PV could supply 20-40% of electricity demand in US and Europe
Share of rental property	Renters do not have an incentive to invest in PV; 30% rental property in EU vs. 35% in US
Electricity demand trends	Flat or declining demand increases competition between prosumers and other generators
Renewable energy development	Non-prosumer renewable energy development may "crowd out" prosumers
Existing grid infrastructure	Large, modern grids more able to absorb prosumers than small, old or remote grids

Opportunities and risks need to be clearly articulated and balanced – and stakeholder interests aligned

Opportunities / Benefits		Challenges / Costs / Risks		
Political benefits	Grid benefits	Decreased TSO/DSO revenue	Grid expansion and upgrades	
 PV popular with voters "Energy Democracy" 	T&D deferralAvoided losses	 Reduced revenue Risk of "death spiral" 	 Cost to expand grid Risk of stranded assets 	
Economic benefits	Environmental benefits	Incumbent generator risks	Decreased tax revenues	
Job creationDecrease fuel imports	 Emissions reductions Water conservation	 Generators lose revenue Risk of bankruptcy 	 Lower tax payment from the retail rate 	

Technical Challenges

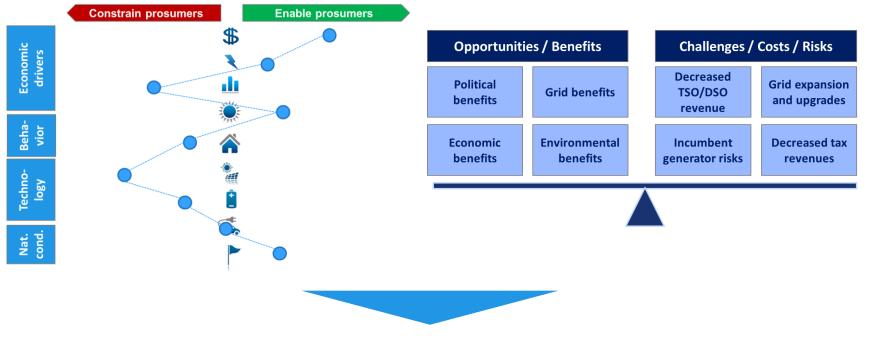
Solutions exist to increase the capability of grids to

accommodate more prosumers

Categories	Examples		
Utility- and System Owner-led Solutions	 Grid reinforcement: Advanced voltage control for HV/MW transformers On-load tap changer, static volt ampere reactive control, booster transformer Adopting storage controlled by the distribution grid operator Network reconfiguration Advanced closed-loop operation Improved Data and Forecasting 		
Prosumer-led solutions	 Incentivize prosumer storage Encourage greater self-consumption via price incentives Curtail solar PV power output PV orientation Adoption of advanced or "smart" PV inverters 		
Interactive Solutions	 Demand response via local or market price signals SCADA-based techniques Voltage and VAR control technologies 		

- Introducing Prosumers and PV
- Role of Incentives and Enabling Policies
- Policy Makers and Key Drivers
- Potential Future Strategies

Potential Future Strategies

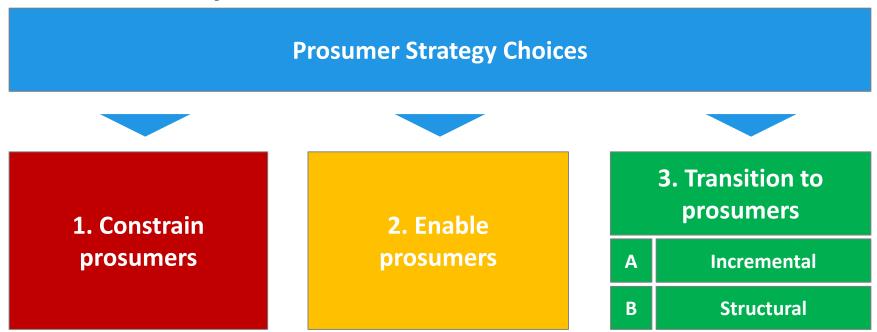


To define a policy strategy, governments need to evaluate all drivers and balance opportunities and risks

1. Evaluate drivers and conditions

Are the conditions in place to support nonincentivised consumer scale-up? 2. Balance opportunities and risks

Given the trade offs, is support for prosumers a national policy objective?



3. Define policy strategy

Potential Future Strategies

Prosumer strategies are required to sustain growth and to enable industry transition

Restrictive policies to avoid structural changes to utility business and regulatory paradigms

Enabling policies like compensation for surplus production and transparent interconnection rules Prosumer compensation mechanisms, rate design, market reform and tax reform

New business models, new product and service offerings, emerging tech like smart grid ...a policy objective?

Danish government unveils bill to introduce tax on self-consumed PV power

The government said the tax is expected to reduce budget expense from DKK 4.9 billion to DKK 3.7 billion, and to slow faster than expected development of solar.

MAY 22, 2017 EMILIANO BELLINI

Conclusions

Prosumer scale-up will require policies to enable market transition

- Potential is largely untapped
- Commercial prosumers have been slow to emerge on an "incentive free" basis (mainly due to economics)
- Support policies are currently the primary determinant of prosumer emergence.
- Economic drivers are accelerating prosumer case.
- Commercial prosumers can accelerate the transition to more decentralized, interactive, networked system.
- Policy makers, regulators, and affected utilities need to develop strategies to better anticipate, integrate, and plan for a growing number of commercial prosumers.
 - Designing new policies for net excess generation,
 - Facilitating improved data on national building stock,
 - Calculate (local) benefits of prosumers

Thank you. Questions? matthew.kennedy@ierc.ie

