

Experts' Group on R&D Priority-Setting and Evaluation (EGRD)

Behavioural economics, policies and modelling

Carrie Pottinger, Programme Manager Energy Technology R&D Networks, IEA Hannah Daly, Energy Modeler, World Energy Outlook, IEA Brian O'Gallachoir, Chair, TCP on Energy Technology Systems Analysis (ETSAP TCP)

Links between social science, behavioural economics, policy

Integrating BE into energy and climate models

• Energy system optimisation models (ESOMs)

Summary

Methodologies and frameworks for social sciences (Huebner et al)

Understanding the underlying rationale and the behaviour

- Practice theory
- Psychology (the individual)
- (Sociology) (the individual in society)

Measuring the actions

- Energy monitoring
- Web surveys
- Walking interviews
- Preferences (stated vs. revealed)
- Historical data

Modelling

- Agent-based model
- Discrete choice
- Econometric model

Behavioural economics

- The relationship between economics and psychology
- Aims to apply scientific method to the study of economic activity
 - Empirical studies of decision making and models are applied to economic problems
- Based on repeated experiments and observations
 - Rational (predicted) vs. irrational (unpredicted) behaviour
- The relatively new science of BE is rapidly informing policy
- Strong features of early applications to regulatory design
 - Choices are influenced by the **simplicity of the information** and the range of options
 - Consumers are drawn towards **more convenient options**, especially default options
 - The **attributes of options** can affect how they are weighted in the decisions

Decision processes

- How to account for non-linear decisions (i.e. compound factors)

Policies - most often regulatory

- Tax compliance
- Consumer policy
 - Markets with relatively complex products (financial services, health insurance, markets involving service contracts such as energy)

Examples of policies informed by BE

- **United States:** Credit Card Accountability Responsibility and Disclosure Act (based on behavioural evidence); vehicle fuel efficiencies (EPA changed the labelling of MPG)
- **United Kingdom:** Behavioural Insights Team (internal consultancy for UK policy makers which uses local policy trials and experiments to test behaviourally informed ideas)
- Australia, France, Denmark, Sweden, Norway, UK, US and EC: Promoting awareness of BE among policy makers generally

Evaluating success

- Easier to identify possible solutions than to measure the impacts

Priorities

- Accurately representing the intersection between energy technologies, economics and human behaviour is not straightforward, and right now is ignored in most modelling studies
- Consumer behaviour can both be an opportunity and a barrier to energy system transitions
- Therefore to understand how consumer behaviour influences energy system pathways is essential for planning low-carbon pathways

Integrating BE into energy and climate models

- Contributions of social science (behaviour) are more difficult to measure than those of other disciplines (natural sciences, engineering, technology, medical, health) or economic (financial)
- **Behaviour:** intangible, indirect elements (who, how, when, why)
 - Information base: surveys, social science
 - Outcomes: case studies, hypotheses
 - Messages: inferred
- Modelling: tangible, quantifiable elements (prices, consumption)
 - Information base: data collection
 - Outcomes: scenarios
 - Messages: relative cause-and-effect

iea

Key modelling parameters

• Costs

- Hidden or intangible costs
- High time preference
- Price sensitivity (elasticities)
- Rate of technology adoption
 - Hurdle rate

Behaviour

- Dependent on the individual <u>and</u> the social group/context
- Natural vs. accelerated replacement rates ("nudge")

Modelling approaches to behaviour

Source: UCL Energy Institute (2015), Addressing the behavioural gap in energy/economy models", BE4 workshop, UCL Energy Institute, composite of modelling approaches. https://iea-etsap.org/index.php/etsap-project/be4-presentation

- Building sustainable energy systems requires a focus on a broad range of issues
 - Technologies, economics, energy efficiency and low-carbon fuels
 - Behaviour
- Energy/engineering/economic/environment (E4) models typically neglect behaviour
 - Progress in recent years to integrate behaviour

Risks and benefits

- **Risks:** ignoring the role of behaviour
- Benefits: addressing behaviour in long-term mitigation modelling
- Experience with methods enables improvements

Achieving technology transitions in ESOMs

- Rational decision-making
- Perfect information
- Competitive markets
- Perfect foresight
- "Social planner" perspective
- Only price-based demand response (if at all)

Main challenges of modelling behaviour

- Limited understanding of 'behaviour'
- Lack of theories that fully explain behaviour
 - Data issues
 - Lack of high-quality data relevant to behaviour
 - Digitalisation (cheap sensors and data storage) opens new opportunities to observe behaviour
 - · Vast amount of potential "big data"
 - · Does not directly translate into information
 - · Methodologies needed to filter, analyse and understand the data.
 - Huge variability in behaviours
 - Measurement issues
 - Self-reported vs observed consumption
 - Huge complexity of the physical processes through which behaviour is translated into changes in energy demand

Three key behavioural parameters

- Discount rate (r)
 - Time preference as reflected in actual decisions, excluding technology-specific risks
- Intangible cost (i)
 - Technology-specific decision factors, especially differences in quality of service and cost risks
- Market heterogeneity (v)
 - Reflects the diversity among decision makers in terms of real and perceived costs (logistic curve)

Source: UCL Energy Institute (2015), Addressing the behavioural gap in energy/economy models", BE4 workshop, UCL Energy Institute, composite of modelling approaches. https://iea-etsap.org/index.php/etsap-project/be4-presentation

Hybrid models which integrate complex behaviours

	Primary Energy Supply	Intermediate Conversion	End-Use	
Innovation and logisitcs	Endoge	nous technological learning ((3.3.1)	
Innovat logis	Lumpy investment (3.3.2)			
Heterogeneous decision makers		Hurdle rates (3.3	.3)	
Heterog deci maj			Consumer choice (3.3.4)	
Macro- economic feedbacks			Elastic demands (3.3.5)	
Ma econ feedł	Ν	acroeconomic effects (3.3.6))	

Source: DeCarolis, J., et al (2017), Formalizing best practice for energy system optimization modelling, Applied Energy 194 pp 184-198.

- Let the problem drive the analysis, not the other way around
- Make the analysis as simple as possible and as complex as necessary
- Develop quality assurance procedures and apply them to input data
- Consider the range of sectoral detail across the model
- Re-evaluate the modelling approach and objectives throughout the analysis
- Consider uncertainties that are both endogenous and exogenous to the model and how they can affect conclusions
- Make transparency a goal of model-based analysis

* Joseph DeCarolis, Hannah Daly, Paul Dodds, Ilkka Keppo, Francis Li, Will McDowall, Steve Pye, Neil Strachan, Evelina Trutnevyte, Will Usher, Matthew Winning, Sonia Yeh, Marianne Zeyringer 2017 Formalizing best practice for energy system optimization modelling. Applied Energy 194 pp 184-198

Discount and hurdle rates

Discount rate (global – applied across the model)

- **Prescriptive** or 'ethical' discounting (0.11 3.5%)
 - · The value society attaches to present over future consumption or utility
- Descriptive, or behavioural (10%)
 - · Real market risk, required rate-of-return

Hurdle rate (applied to specific sectors or technologies)

- The agent making the investment may differ

- Private cost of capital (7-10%)
- Business borrowing costs (3-7%)
- Government (1%?)

May also represent

- The required rate of return on investment (10-15%?)
- The perceived energy efficiency gap of individuals (up to 25%)
- Other ways to represent behaviour

Hurdle rates

• Case 1 (global 10%, end-use 25%)

- Market investment rate
 - "to reflect commercial UK market rates of return"
- Higher technology-specific discount rate
 - "to account for market risks and consumer preferences"
- Imperfect knowledge and non-cost preferences
- Market risk
 - "information deficiencies and other market imperfections in the uptake of end-use conservation options"

• Case 2

Cost of financing and social discounting

- "The first is ... in accordance to an annual return on investment. Social discounting is used to reflect the valuation on wellbeing in the near future versus well-being in the longer term"

Case 3

New/unproven technologies

- "a factor of 15% to reflect a higher risk in investing in unproven technologies and infrastructures"
- "meant to mimic hesitancy on the part of the purchaser to invest in a newer technology over an established technology"

Data issues

• Self-reporting versus observed data

Source: Gauthier and Shipworth (2015).

- 2012 Green Deal (UK government flagship energy efficiency programme)
- Consumer 'take-up'rates were calculated using results from choice modelling of main energy efficiency measures

	Modelled uptake to March 2015	Actual uptake to February 2015
Solid wall insulation	147,000	1,704
Cavity wall insulation	830,000	320
Loft insulation	364,000	938
Glazing and draught proofing	~100,000	254 🛟

Source: Department of Energy and Climate Change (2012).

- Data collection: Focus groups, surveys
- Understand the relationship between hypothetical and actual behaviour
- The narrative for the model results should be consistent with the use of the hurdle rate
 - Prescriptive (normative) "this is the optimal energy systems"
 - Are we missing out on real-world barriers to technology uptake and being overly optimistic?
 - Descriptive (positive) "this is a realistic scenario for the next 50 years"
 - Is the use of HRs predetermining technology deployment?
- Consistent rationale for HRs across different technologies
- Rationale and HRs should be transparent

iea

Summary

 Informing policies through behavioural economics (BE) has increased rapidly in recent years

- Challenges with data collection and methodologies
 - Non-linear, indirect, inferred
- Provide possible solutions yet difficult to measure effectiveness and impact

Modelling provides valuable insights to policy makers

- Limited understanding of 'behaviour'
- Disconnect between consumers' reported and actual behaviour
- Too many judgements are needed

Formalised guidance comes at a critical time for ESOMs to inform climate policy

- Hurdle rates have the potential to substantially change optimal technology pathways

EXTRA SLIDES

Average hurdle rates for sectors

Inconsistent portrayal of

- Individual purchaser behaviour
 - Energy efficiency gap vs.
 low cost of borrowing

- Novel technologies

 High cost of uncertainty vs.
"technology agnostic"

	UK TIMES	ESME	PRIMES/ JRC TIMES	UK TIMES/ MACRO	DECC DDM
Upstream/processes	10%	8%	7%	10%	10%
Power sector	10%	8%	9%	10%	5-19%
Agriculture	10%	8%	12%	10%	10%
Industry	10%	8%	12%	10%	10%
Services	10%	8%	12%	10%	10%
Residential	5%	8%	18%	25%	5%
Cars	5%	8%	18%	25%	5%
Public transport	7%	8%	8%	25%	7%
Road freight	10%	8%	12%	9%	10%
Aviation	10%	8%	8%	4%	10%
Shipping	10%	8%	12%	4%	10%

Average hurdle rates for residential technologies

Study	End-use type	Average rate
Arthur D. Little (1984)	Thermal shell measures	32%
Cole and Fuller (1990)	Thermal shell measures	26%
Goett (1978)	Space heating system and fuel type	36%
Berkovec, Hausman and Rust (1983)	Space heating system and fuel type	25%
Hausman (1979)	Room air conditioners	29%
Cole and Fuller (1980)	Refrigerators	61-108%
Gately (1980)	Refrigerators	45-300%
Meier and Whittier (1983)	Refrigerators	34-58%
Goett (1983)	Cooking and water heating	36%
Geott and McFadden (1982)	Water heating fuel type	67%

Sources: Sandstad et al. (1995) and Train (1985).

Source: Manon et al., (2006) Strategic Investments in Residential Energy Efficiency: Insights from NE MARKAL".

WholeSEM household questionnaire

• Which central heating would you choose?

- Technology attributes are derived from UK Times Model
- Develop a discrete choice model of heating selection
- Derive hurdle rates which differentiate costs, novelty, hassle
- Differentiate hurdle rates for different population segments

	Gas	Electric storage	Heat pump	Solid fuel
Upfront cost	£2,000	£2,000	£3,000	£3,000
Annual cost	£500	£750	£750	£750
CO ₂ savings	-20%	-40%	-40%	-100%
Lifetime	15	20	15	20
Effort for servicing, fuelling	Low	Medium	High	Low
Operation effort	Low	Medium	Medium	High

Source: WholeSEM,