

Multi-perspective system analyses for robust energy decision support

Contents

- 1. Multi-Perspective System Analyses
- 2. Challenges for Robust Policy Advice
- 3. Supporting Methods and Instruments
- 4. Conclusions

1. Multi-Perspective System Analyses

EA European Academy, Germany / IEA EGRD Workshop, 12-13 October 2017, Copenhagen

Basic elements of a technical energy supply system

(Pictures from Pixelio, Siemens, Wikipedia, everystock, dpa 2014)

EA European Academy, Germany

IEA EGRD Workshop, 12-13 October 2017, Copenhagen

...are surrounded by societal framework conditions

(Pictures from Pixelio, Siemens, Wikipedia, Everystock, dpa 2014, Background: Siemens online game "Power Matrix" (2014))

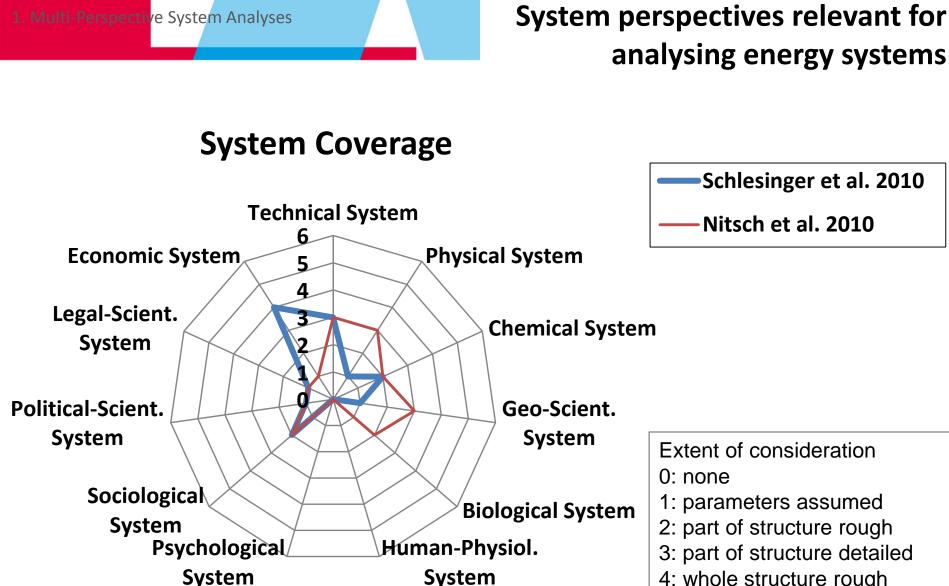
EA European Academy, Germany

IEA EGRD Workshop, 12-13 October 2017, Copenhagen

Multi-Perspective System Analyses (the "Systems-Web-Approach")

System

A phenomenon which is characterised by regular correlations between circumstances.

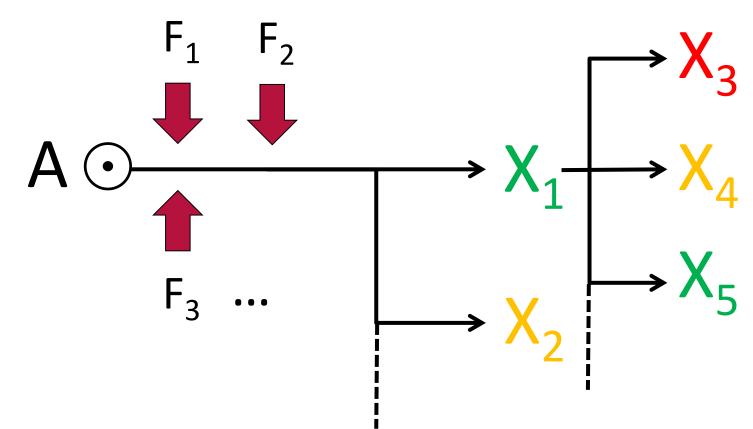

determined and separated from its environment by

1. System Description

formal reconstruction of regular correlations between circumstances with a certain purpose and with certain defining perspective (determined by formal means used/a certain **operation** *O* () chosen)

$$Ch_{n}(E_{i}(t+1)) = O(Ch_{m}(E_{j}(t)))$$

with: $E_{i,j}$: Entities, $Ch_{n,m}$: characteristics, t: point in time O() could be: energy flows, chemical reaction, communication, ... and by 2. Its Purpose (e.g. Energy Supply)


- 4: whole structure rough
- 5: whole structure detailed

System

2. Challenges for Robust Policy Advice

Policy Advice: providing knowledge for action

The action A with the purpose X

leads under the (legal, societal, technical, ...) framework conditions (F_n) to the circumstances X_n (desired/undesired impacts)

Aim of responsible policy decisions: Realising desirable long-term viable solutions

Concentrating on the aim of **Safe&Secure/Robust Solutions**:

- **Dynamic stability**:
 - **Robustness**: Solutions need to be stable against adverse impacts from the outside
 - **Opportuneness:** Solutions should enable to take advantage of unexpected fortune developments
- Social robustness:

The solutions are acceptable within a wide range of diverse interests and value commitments.

Robust Solutions require Robust Policy Advice

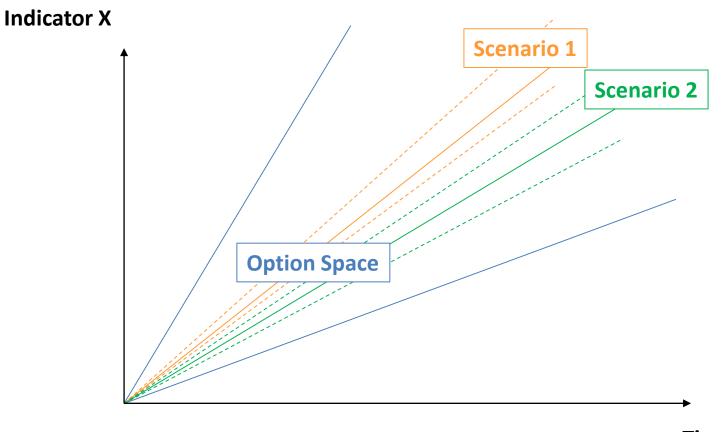
Policy advice, i.e. statements about the success and the impacts of an action provided, needs to be **reliable**:

• Epistemically robust

invariant against fluctuating or unknown pertinent causal factors and factual conditions

• Socially robust

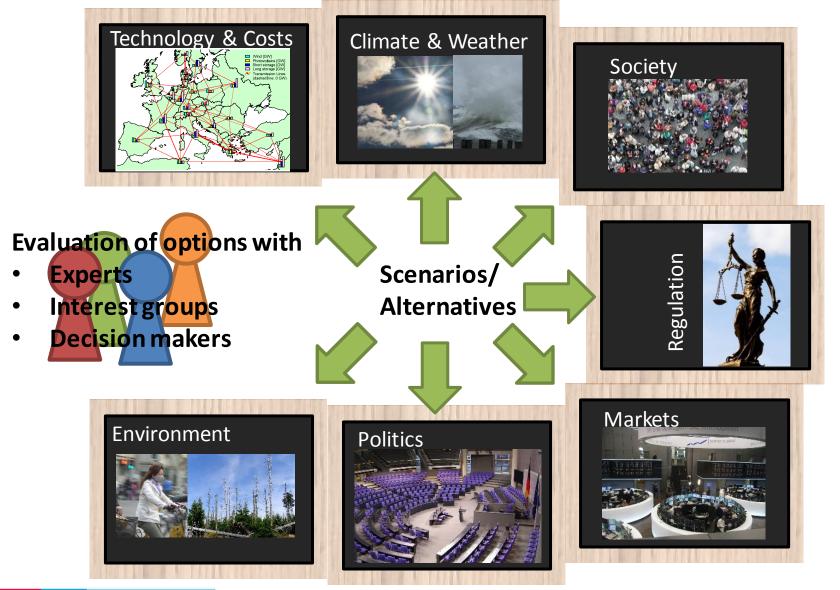
invariant with respect to a large range of interests and value commitments


- Analyses and underlying knowledge needs to fit to the purpose
 - Considering relevant technical, professional, scientific and local, experience based knowledge
 - Setting normative/non-epistemic elements right (e.g. preferences for *"*false-positives/negatives")
- Analyses need to follow a large spectrum of options, and acquainting decision makers with the underlying uncertainties
- Exploring the option space via Meta- and reflective analyses (transparency, implicit commitments, vary/exchange premises)
- Selecting those options which do not contradict major societal values and fit well with respect to evaluations by interest groups
- Concentrate on analysing **decisive issues and correlations**

2. Challenges for F<mark>obust Policy Advice</mark>

Specific Challenges: Scientific Expertise vs. Academic Research

- Application to real world problems → helpful answers are not readily available → combining various general "truths" + practical demands → unavoidable incoherencies
- Challenges selected by urgency → potential difficulty in tractability, non-laboratory conditions → much higher uncertainty
- New expert scientific knowledge produced under close scrunity of the public → internal controversies, contrasting conceptual frameworks become visible → distrust may be caused
- Bringing scientific generalisations to bare on specific practical problems → additional local knowledge/lay participation needed
- 5. Practical impact of science-based recommendations → appropriateness partly assessed by non-epistemic (normative) criteria which are not part of academic research (efficiency, economic benefit, environmental impacts, social issues)


Approach, 1st Step: Analysing the Option Space

Time

EA European Academy, Germany / IEA EGRD Workshop, 12-13 October 2017, Copenhagen

Approach, 2nd Step: Selecting Acceptable Solutions

(Pictures from Pixelio, Siemens, Wikipedia, Everystock, dpa 2014, Background: Siemens online game "Power Matrix" (2014))

EA European Academy, Germany

IEA EGRD Workshop, 12-13 October 2017, Copenhagen

3. Supporting Methods and Instruments

EA European Academy, Germany / IEA EGRD Workshop, 12-13 October 2017, Copenhagen

Instrument 1: Combine Expertise via variants of EA project groups

Considering relevant expertise with respect to

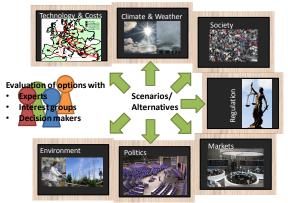
- Relevant content aspects
- Kind of knowledge: scientific and practical expertise

Enabling problem-related reflexive discussions

- Working problem-related
- Analysis of the whole option space including uncertainties
- Considering known substantial societal evaluations
- Mutual recognition of validity of arguments

Example "EnAHRgie": energy concept and sustainable land use

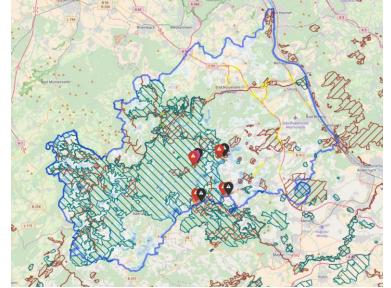
- "Innovation group" with scientists and practitioners
- Scientific expert group
- Multiple participatory elements + knowledge management (s. www.enahrgie.de)


80

EA European Academy, Germany

Instrument 2: Co-Design via modified EA-Lab-Workflow

- Identification of interesting questions / targets (with experts, interest groups, decision makers)
- Identification / development of relevant models, data, analyses (data search/-surveys, data analyses, translating questions to analyses)


- 3. Identification and formulation of "experiments"/" scenarios" and adequate (interactive) analysis and presentation/visualisation of the option space
- 4. Further **adaption of results / answers** to the questions, discussion of uncertainties/options/limits
- 5. Adapted presentation, publication and communication of results

IEA EGRD Workshop, 12-13 October 2017, Copenhagen

Interactively visualising matrices/morphological fields, other data (e.g. in EA-Lab)

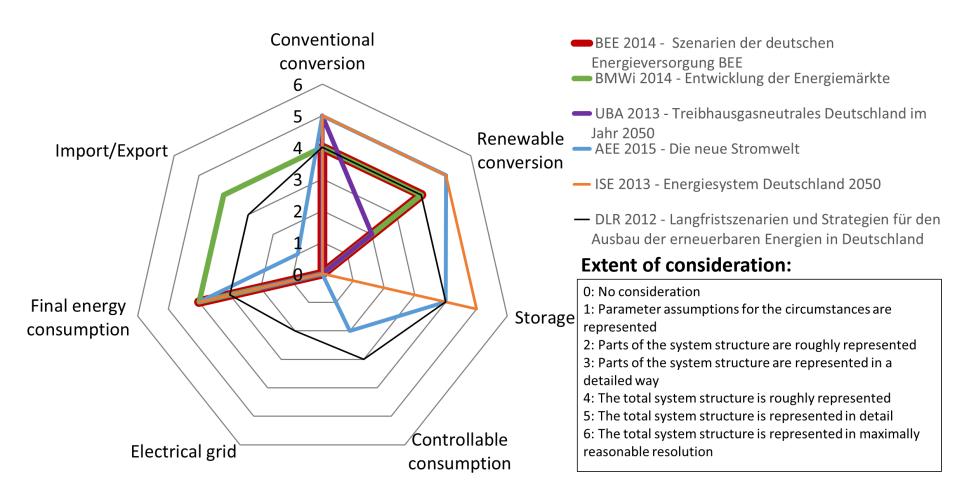
	Negative	Positive	Options for action:	Limits for action:	
	Impacts:	Impacts:	Freedom/	Dignity/justice/	
	Harm	Beneficience	autonomy	fairness	
Energy Supplier					
Consumers					
Local Economy					
Local Politics					
Regional / national					
Politics					
Local Population					
Close Environment					
Far Environment					
Global Environment					

3. Supporting Methods and Instruments

(Source: EA-Lab using Leaflet, ©OpenStreetMap contributors, ©CC-BY-SA, © LANIS RLP, © ATKIS-Daten des LVermGeo RLP, © Windatlas RLP)

Zielindikatoren

Szenario	Regionale Wertschöpfung	Gestehungskosten Energieumwandlung	Endenergieverbrauch	Versorgungsgrad EE Strom - Wärme	Treibhausgase	Flächeninanspruchnahme
Szenario 0 (Business-As- Usual)	Keine Zielvorgabe	Keine Zielvorgabe	Keine Zielvorgabe	Keine Zielvorgabe	Keine Zielvorgabe	Keine Zielvorgabe
Szenario 1	++	++	++	++	++	++
Szenario 2	+	+	+	+	+	+
Szenario 3	0	0	0	0	0	0
	-	-	-	-	-	-
		-				

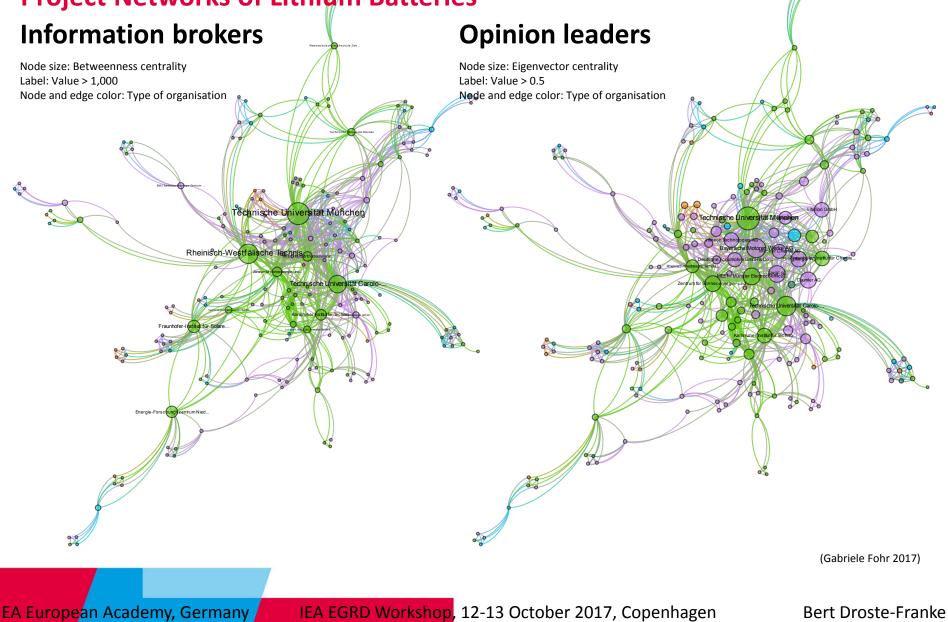

Source: EA-Lab

EA European Academy, Germany

Instrument 4: Transparency of Analyses (Systems Web Approach)

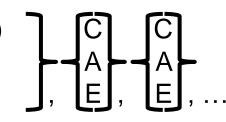
Extent of considered model elements varies strongly between studies

3. Supporting Methods and Instruments


(Source: Droste-Franke and Weidle 2017)

EA European Academy, Germany / IEA EGRD Workshop, 12-13 October 2017, Copenhagen

Instrument 5: Extended (System) Analyses – Innovation Networks

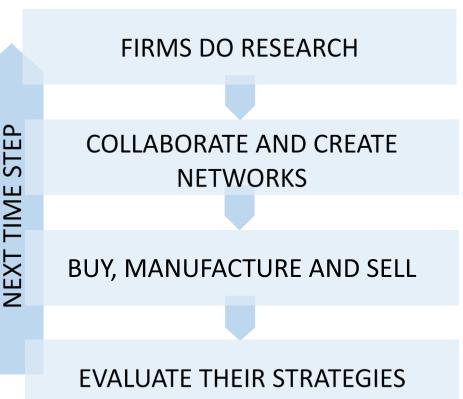

Project Networks of Lithium Batteries

3. Supporting Methods and Instruments

Instrument 5: Extended (System) **Analyses – Innovation Networks**

- Simulating Knowledge Dynamics in Innovation Networks (SKIN)-Modell (Gilbert et al. 2010):
 - Agent-based simulation of innovation networks
 - Central aspect: knowledge vector/"kene" of agents (e.g. corporations):
 - C: Capability (subject area) A: Ability (Specialisation) E: Expertise (skills)

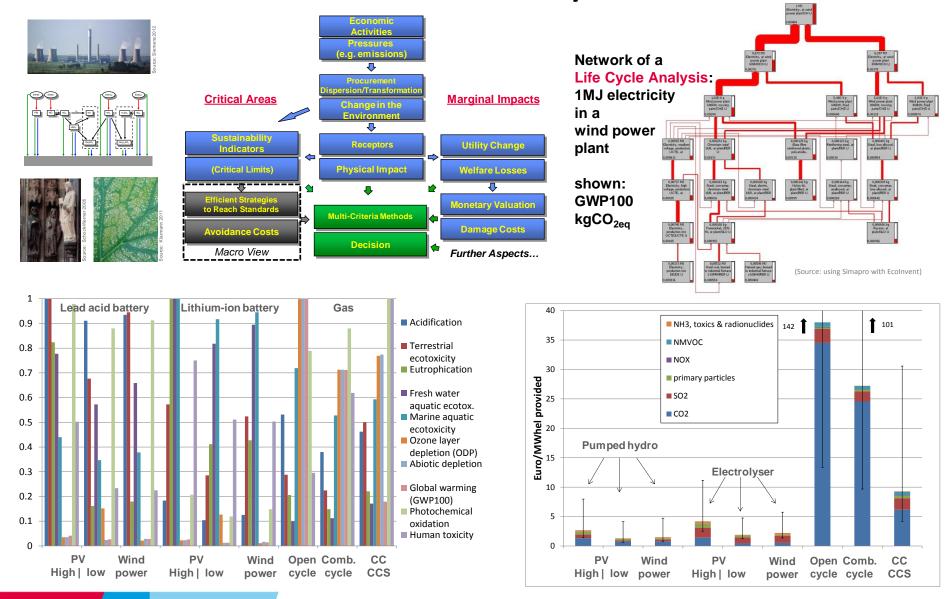
e.g.: {C: molecular biology, A: protein design, E: much expertise}


- Substantial activities: beside others co-operations, research, production of innovative goods, trade, buying and selling
- Aim: Answering "if-then-questions" to innovation activity
- **Basis: beside others data/network analyses, empirical surveys:** calibration, characterisation of agents, validation

Instrument 5: Extended (System) Analyses – Innovation Networks

Example for lithium batteries (project InnoSEn)

• Actors Space


- Firms, research institutes, ...
- Size, research activity, co-operation strategies, location in value chain
- Knowledge exchange
- Financing environment
- Market representation stationary energy market by ABM AMIRIS, others: aggregated
- Product representation products with varying characteristics

• Knowledge representation considering knowledge exchange extensities

Instrument 5: Extended (System) Analyses – Environmental Effects

EA European Academy, Germany

IEA EGRD Workshop, 12-13 October 2017, Copenhagen

4. Conclusions

EA European Academy, Germany / IEA EGRD Workshop, 12-13 October 2017, Copenhagen

Conclusions

- Multiple perspectives are needed to be able to analyse energy systems in their societal framework conditions
- Various challenges arise for **Robust Policy Advice**
 - Purpose related expertise needed
 - Considering large option space
 - **Transparency** as precondition for reflexive (meta-)analyses
 - Selecting options by relevant, adequate evaluation
- Various supporting methods and instruments exist and are currently adopted, used and tested, e.g. at the EA for regional energy concepts and innovation analyses

Thank you!

Kontakt:

Dr.-Ing. Bert Droste-Franke, Dipl.-Phys. EA- European Academy of Technology and Innovation Assessment GmbH Wilhelmstr. 56, 53474 Bad Neuenahr-Ahrweiler

EA European Academy, Germany

IEA EGRD Workshop, 12-13 October 2017, Copenhagen

Some References:

Droste-Franke B, Carrier M, Kaiser M, Schreurs M, Weber C, Ziesemer T (2015) Improving Energy Decisions. Towards Better Scientific Policy Advice for a Safe and Secure Future Energy System, Ethics of Science and Technology Assessment, Volume 42, Springer, Berlin

Droste-Franke B and Fohr G (2017) Simulating Innovation of Key technologies in German Energy Transition, Social Simulation Conference (SSC) 2017, ESSA, 25-29 September 2017, Dublin

Droste-Franke B and Weidle M (2017) Key Tasks and Key Technologies for the German Energy Transition, Poster at IRES 2017, 11th International Renewable Energy Storage Conference, Düsseldorf

Schaffrin A and Droste-Franke B (2016) EnAHRgie – die lokale Energiewende gestalten. In: Magazin der Akademie für Raumforschung und Landesplanung 46(2): S. 44-47

Kontakt:

Dr.-Ing. Bert Droste-Franke, Dipl.-Phys. EA- European Academy of Technology and Innovation Assessment GmbH Wilhelmstr. 56, 53474 Bad Neuenahr-Ahrweiler

EA European Academy, Germany

IEA EGRD Workshop, 12-13 October 2017, Copenhagen