

IEA EGRD

The Role of Storage in Energy System Flexibility

Flexibility Option of the Demand Side

Matthias Stifter (AIT Energy Department, Austria)

Motivation for Demand Response

Need for flexiblity of the demand

- Increase of (local) distributed generation (e.g..: PV, CHP, Wind)
- → PV: "grid-parity"
- → Impact on network: curtailment (Germany: since 2013: 60% Peak curtailment)
- → Higher dynamics in the power system
- → Higher unbalance due to forecast errors

DR as a possible alternative to energy storage

Demand Response Resources

- Electro thermal thermal storage
 - Warm water boilers
 - Cooling / freezers
 - Heating (HVAC)
- Electric vehicles electrical storage
 - Controlled charging
- **Public services** load shifting
 - Water pumps
 - Waste water / sewage
- Storages → Buffer to meet energy constraint (comfort)
- Load shifting for network operation is already in place for many years (ripple control)
- Aggregation makes it more robust \rightarrow Virtual Power Plant

Technical and practical potentials in Germany

sectors	Techn. shiftable power		Displacable Energy			
	2010: ca. 2,6 GW		2010: ca. 8,0 TWh per year			
Household	2020: ca. 3,8 GW	9CW/	2020: ca. 12,4 TWh per year			
	2030: ca. 6,0 GW	PSW,	2030: ca. 32,3 TWh per year	7-15% total		
Tertiary sector	2010: ca. 1,4 GW	40-70	2010: ca. 5,0 TWh per year	consumption		
	2020: ca. 1,7 GW	GW load	2020: ca. 5,6 TWh per year			
	2030: ca. 1,8 GW		2030: ca. 9,7 TWh per year			
Industry	2010, 2020, 2030 load shift potential of 2,8 GW to 4,5 GW					

1,5 GW load shifting potential in Germany especially through thermal applications

> Source: B.A.U.M Consult - Load shifting potentials in small and medium-sized businesses

Shiftable Power [GW]

Sectorial electricity end use in Austria (2012)

28.10.2014

Source: Statistik Austria, 2012

Categories of electricity use in households (2012)

Source: Statistik Austria, 2012

Technical potentials in Austria

Practical load shift demand at households in Austria

Differences between DR and energy storage

Battery operation vs. Demand requirements

Differences between DR and energy storage

Battery operation vs. Demand requirements

	Battery	Demand Response
Operation	charging / off / discharging	(forced) charging / off
Self discharging	losses	losses = customer demand
SOC range	depends on previous operation	unknown free rest capacity
Rated power	charging = discharging	withdraw > charging
Storage time	short to long term	(short term) "shifting"
Availability	dispatchable	external factors (demand, T,)
Purpose	dedicated system	part of demand side
Control	energy management system	simple control (e.g., thermostat)
Objective	storage of electric energy	shifting of energy
Scale	large / utility	settlement, building, households

Examples from pilots and field tests

Sharing best and bad practices and defining use cases

Project SGMS-HiT– Smart Grids Model Region Salzburg

Buildings as interative participants in the Smart Grids

center for usability research & engineering

28.10.2014

SGMS – HiT

Utilizing HVAC-Systems (heating, hot water)

Separate usage of energy from energy supply

→ **Buffering** with thermal storages

- Use energy which is most efficient for the grid
 - PV Heatpump
 - Biogas (CHP)
 - Grid
 - District heating
 - → grid friendly building

• **Comfort** must be **preserved**.

SGMS – HiT

Three heat sources feeding into one storage tank

28.10.2014 **90m³ Hot water storage tank**

Project: gridSMART^{® -} Residential Real-time Pricing

Overview – Transactive Grid Control

customer's flexibility (based on current needs) 4. Aggregator Refrigerator determines price at Load 1 2. Customer which grid Water Heater system objective achieved, Price (\$/kWh) aggregates broadcasts to **Air Conditioner** responses to consumers Load form overall (kW) price flexibility Price curve → (\$/kWh) **Customer Price-Flexibility Curve* Price-Discovery Mechanism** Load (kW) **Supply Limit** Aggregate Demand Curve Max Load 3. Utility (all customers) Load ← Charge battery * Labels removed (kW) before sending to aggregates ←Water heater utility **Q**_{capacity} curves -AC Base Load from all Discharge battery Price Price customers → (\$/kWh) 2 (\$/kWh) **P**_{clear}

1. Automated, price-responsive device controls express

Project: gridSMART[®] RTPda Demo

- First real-time market at distribution feeder level with a tariff approved by the PUC of Ohio
- Value streams
 - Energy purchase benefit
 - Capacity benefits: e.g., peak shaving
 - Ancillary services benefits
- Uses market bidding mechanism to perform distributed optimization – transactive energy
 - ~200 homes bidding on 4 feeders
 - Separate market run on each feeder
 - "Double auction" with 5 minute clearing

HVAC automated bidding

- Smart thermostat and home energy manager
- Homeowner sets comfort/economy preference
- Can view real-time and historical prices to make personal choices

Electric Vehicles

Electric storage as a flexible resource to integrate renewables

EV Simulation Environment

Use-Case Description: Basic Data

Vehicle	Battery [kwh]	Chargin Amperage[A]	g Specificat _{Voltage[V]}	ions _{phases}	Range ^[km]	Consumption [kWh/km]
BEV	27,5	16	230	3	130	21,15
PHEV	10,5	16	230	1	60	17,50

Impact of different maximum charging power (11kW)

Opportunity Charging – Summary (Summer & Winter)

Impact of different maximum charging power (43kW)

Opportunity Charging – Summary (Summer & Winter)

Power demand in a car park (Park & Ride)

Distribution of parking duration and the zone of attraction

Distribution of parking duration of 147 electric vehicles (t=60min)

Zone of attraction for the car park

Uncontrolled Charging (2020)

• Charging power for best case (summer) / worst case (winter) (147 Cars)

Controlled Charging Worst Case - Winter (2020)

Charging power for worst case (147 Cars)

Controlled and uncontrolled charging of BEVs (MV)

Local supply - demand match in medium voltage networks

Integration of Renewable Energy

Local supply - demand match in medium voltage networks

Uncontrolled and controlled charging of 306 EVs with 11 kW during two sumer days. Note: wind is accumulated on top of PV generation

Two days simulation in summer

Charging Mode	empty EVs	P- peak [kW]	Charged Energy [kWh]	DER Energy [kWh]	DER Coverage [%]
uncontrolled 11kW	15	751	9964	8079	54%
controlled 11kW/SOC50	55	366	6832	8079	89%
controlled 11kW/SOC25	66	324	6229	8079	99%

Two days simulation in winter

Charging Mode	empty Evs	P- peak [kW]	Charged Energy [kWh]	DER Energy [kWh]	DER Coverage [%]
uncontrolled 11kW	135	883	12613	3971	26%
controlled 11kW/SOC50	197	552	7267	3971	50%
controlled 11kW/SOC25	218	353	5051	3971	71%

Validation of charging management

Real and simulated EVs for charging management validation

Power [kW]

Smart Grids Model Community Köstendorf

Salzburg AG

Salzburg Netz GmbH

Ein Unternehmen der Salzburg AG

In a dedicated demo area supplied by a 250 kVA secondary substation:

- PV system at every second roof top
- Electric vehicle in every second garage
 - Field test of an integrated smart grid solution for low voltage grids
 - "anticipating the future"

AUSTRIAN INSTITUTE OF TECHNOLOGY

SIEMENS

Salzburg Wohnbau

funded by Austrian Climate and Energy Fund & Province of Salzburg

SMART**GRIDS**

Modellregion Salzburg

Controlled e-car charging

IEA DSM Task 17

Objectives, Subtasks, Outcomes

Subtask of Phase 3 - Introduction

Systems view on enabling flexibility in the smart grid

Different views on the Smart Grid: Technology Technology Policy Customer Central Generation Policy Availability Market **Smart Grid** Homes / Buildings Photovoltaics - Electric Vehicles Home Energy T&D Focus on the enabling of flexibility Flexibility Management - Heat Pumps Network Systems - Smart Meters and the impact of it on the stakeholders: - CHP Volatility IEA DSM Task 17 What are the requirements? Customers Phase 3 How do we manage it? Distributed Customer Market How will it effect operation? Generation What are the benefits?

Summary

Challenges and Outlook

Summary

Changes and impact on stakeholders operations

- Mayor differences between battery and DR
- Several studies have identified **DR** as a **cost effective** way to integrate Renewables
- Processes with **thermal** or **electric storage** have high potentials
- Large customers, but also medium and small customers could be targeted
- Charging / positive power has more potential
- DR for **balancing forecast uncertainties** of **renewables**
- Dynamic of load is a challenge for the system operation.
 Research in understanding and developing tools (e.g. prediction) needed

AIT Austrian Institute of Technology

your ingenious partner

Matthias Stifter

Energy Department Complex Energy Systems

AIT Austrian Institute of Technology Giefinggasse 2 | 1210 Vienna | Austria T +43(0) 50550-6673 | M +43(0) 664 81 57 944 | F +43(0) 50550-6613 matthias.stifter@ait.ac.at | http://www.ait.ac.at

Appendix

Additional Information

Role, and potentials of flexible prosumers (households, SMEs, buildings)

- **Controllability** requirements (generation and consumption)
- Opportunities, challenges and barriers for flexibility services (providers and technologies)
- Energy and power balancing potentials
- Smart technologies (SM and Customer Energy MS)
 - VPPs
 - EV charging
 - DG-RES integration and storage
 - Integrating heat pumps and thermal storages

Changes and impact on stakeholders operations

- Methodology development for assessing/quantifying impact
- Grid, market and customers (prosumer/consumer) interaction
- Sharing common benefits/losses
- **Optimization potential** (eg. DR building audits and customer requirements)
- **Regulatory** and **legislative** requirements
- Comparison **costs** vs. delayed **investments**

Sharing experiences and finding best/worst practices

Collection of data

- Workshops
- **Lessons learned** from existing pilots
 - EcoGrid-EU Bornholm, PowerMatchingCity I and II, Linear, Greenlys, Building2Grid, SmartCityGrid: CoOpt, eEnergy, ...

Country specifics

- differences in the implementation
- applicability
- **Extrapolation** of the results from previously collected projects on applicability

Conclusions and recommendations

- Based on the **experts' opinion**
- Will provide a **ranking** based on
 - Impacts
 - Costs
 - Future penetration of the technologies

CEMS and Power Management System interfaces

IEC 62746 Technical Report Objective

Use cases and requirements for the interface between the power management system of the electrical grid and customer energy management systems for residential and commercial buildings and industry.

- User stories \rightarrow use cases \rightarrow data model \rightarrow information content & structure
- Examples:
 - The user wants to get the laundry done
 / EV charged by 8:00pm
 - Grid recognize stability issues
 - CEM feeds own battery pack energy into own network or into the grid
 - Heat pump and Photovoltaic Operation with Real-Time Tariff

Figure 6: Cascaded CEM architecture