California Utility Scale Update

The California Energy Storage Alliance (CESA)

Chris Edgette | Senior Director California Energy Storage Alliance Strategen Consulting

EGRD Berlin

October 23, 2014

Strategen Clients

Strategic thinking and industry expertise creates profitable clean energy businesses

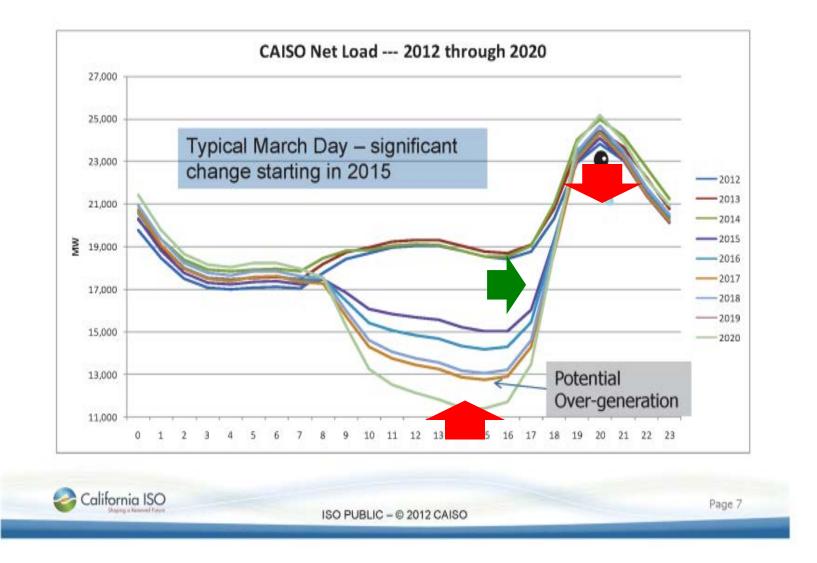
CESA Members

CESA STEERING COMMITTEE MEMBERS

ELECTRIC

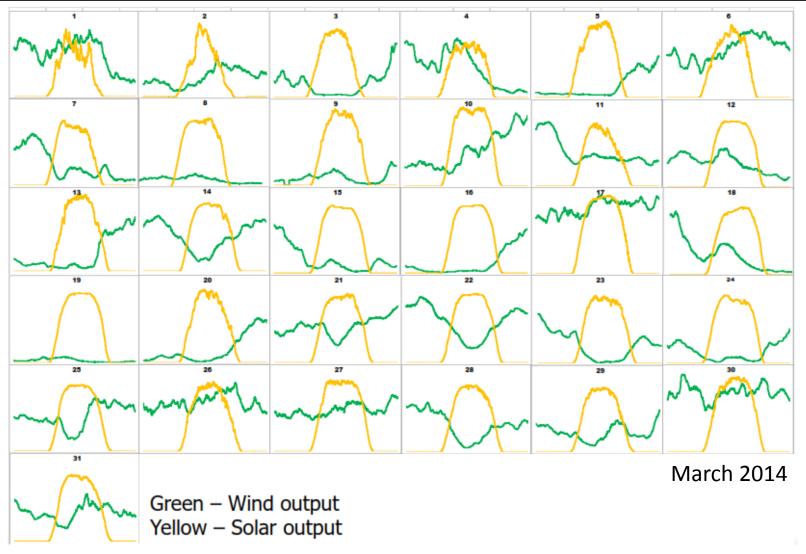
1	

CESA 2014 MEMBERSHIP (NOW 82 STRONG!)

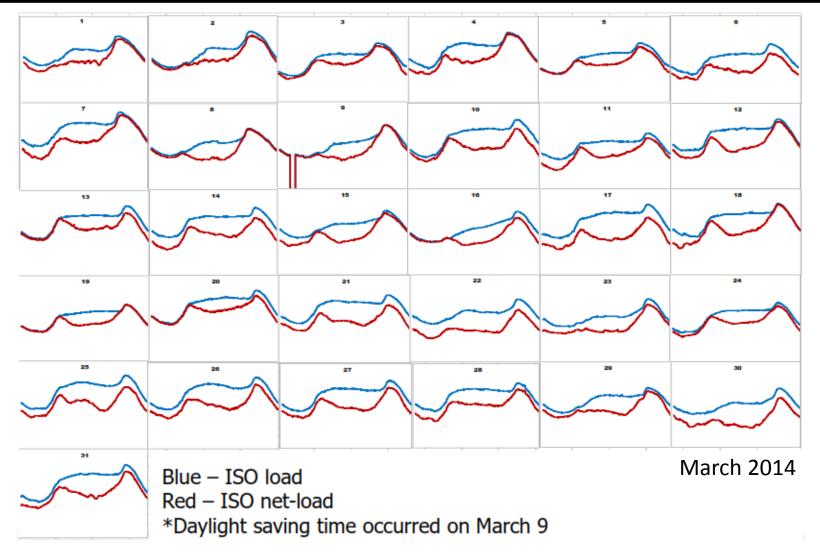

1 Energy Systems Inc A123 Energy Systems **AES Energy Storage** Alton Energy **American Vanadium Aquion Energy ARES North America Beacon Power. LLC Bosch Energy Bright Energy Storage Technologies** Brookfield CALMAC Chargepoint **Clean Energy Systems** Coda Energy **Consolidated Edison**

Customized Energy Solutions Demand Energy DN Tanks Duke Energy Eagle Crest Energy Company **EaglePicher Technologies, LLC EDF Renewable Energy** Enersys **EnerVault Corporation EV Grid FAFCO Thermal Storage Systems FIAMM Energy Storage Solutions** Flextronics **Foresight Renewable Solutions Greensmith Energy Gridscape Solutions** Gridtential Energy, Inc.

Recurrent Energy Halotechnics Hitachi Chemical Co. **Rosendin Electric S&C Electric Company** Hydrogenics **Imergy Power Systems** Saft America Inc. ImMODO Energy Services CorporationSamsung K&L Gates SEEO **KYOCERA Solar, Inc. Sharp Electronics Corporation** LG Chem Sovereign Energy Storage LLC LightSail Energy STEM LS Power Development, LLC Stoel Rives NRG Solar LLC SunEdison **OCI Company** SunPower **OutBack Power Technologies TAS Energy** Panasonic **Parker Hannifin Corporation** Tri-Technic **PDE Total Energy Solutions** Wellhead Electric **Primus Power Corporation**

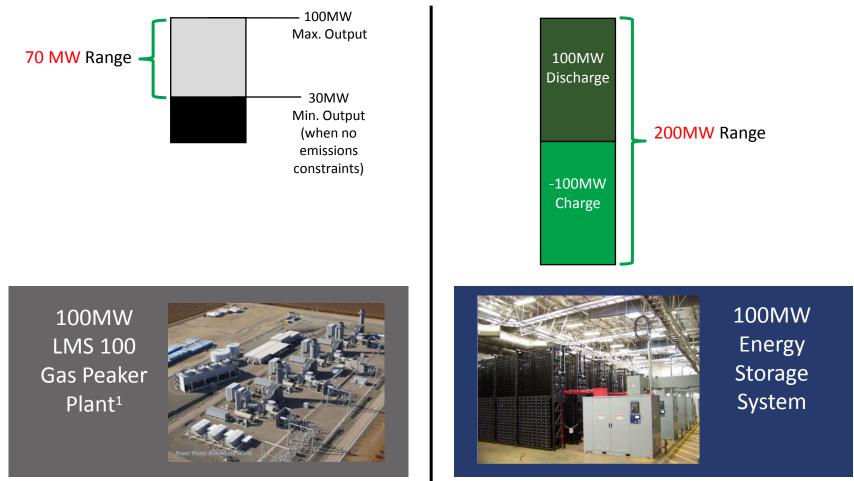


Energy Storage Can Address California's Net Load


Renewable Output in California

Source: CAISO 2014 Flex Capacity Needs Assessment

Renewable Effect on California Net Load

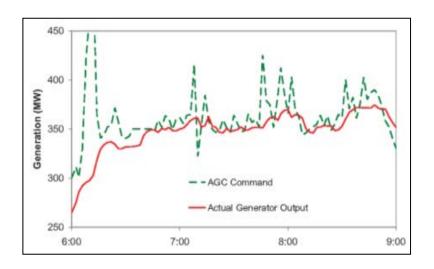


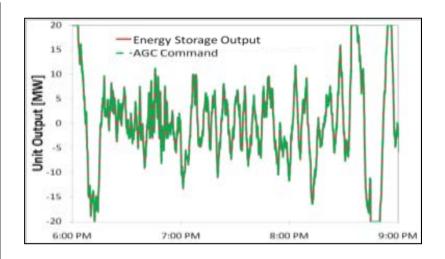
Source: CAISO 2014 Flex Capacity Needs Assessment

Energy Storage: ~3X the Flexible Range per MW

Compare benefits, not megawatts

1. LMS Plant Picture Source: <u>http://www.industcards.com/cc-usa-ca-n.htm</u> (Panoche Power Plant, Firebaugh, CA)


Energy Storage: 3X the Utilization



1. LMS Plant Picture Source: http://www.industcards.com/cc-usa-ca-n.htm (Panoche Power Plant, Firebaugh, CA)

Energy Storage Responds More Quickly

Full Power Ramp 10 Minutes

Graph Source: Kirby, B. "Ancillary Services: Technical and Commercial Insights." Wartsilla, July, 2007. pg. 13 1. <u>http://www.cpvsentinel.com/about.html</u>

Energy Storage System

Full Power Ramp <1 second

Emission Impacts Due to Cycling CCGTs & CTs

NREL concluded that cycling conventional power plants has significant impacts on emissions

CO ₂ Emissions Penalties ⁽¹⁾							
Power Plant Type	Part-Load ⁽²⁾	Ramping ⁽³⁾	Start/Stop				
Gas Combined Cycle (CCGT)	15%	1%	30%				
Gas Combustion Turbine (CT)	17%	1%	40%				
NO _x Emissions Penalties ⁽¹⁾							
Power Plant Type	Part-Load ⁽²⁾	Ramping ⁽³⁾	Start/Stop				
Gas Combined Cycle (CC)	29%	8%	610%				
Gas Combustion Turbine (CT)	16%	1%	180%				

1) Listed as percentage penalty over the equivalent full-load operation for one hour

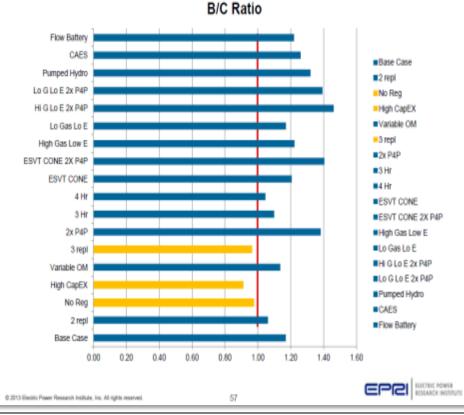
2) Assumes operation at 50% of capacity

3) Ramping leads to far less emissions compared to startups, but occurs more often

Source: National Renewable Energy Laboratory (NREL/PR-6A20-55828): Impacts of Renewable Generation on Fossil Fuel Unit Cycling: Costs and Emissions (May 20, 2012)

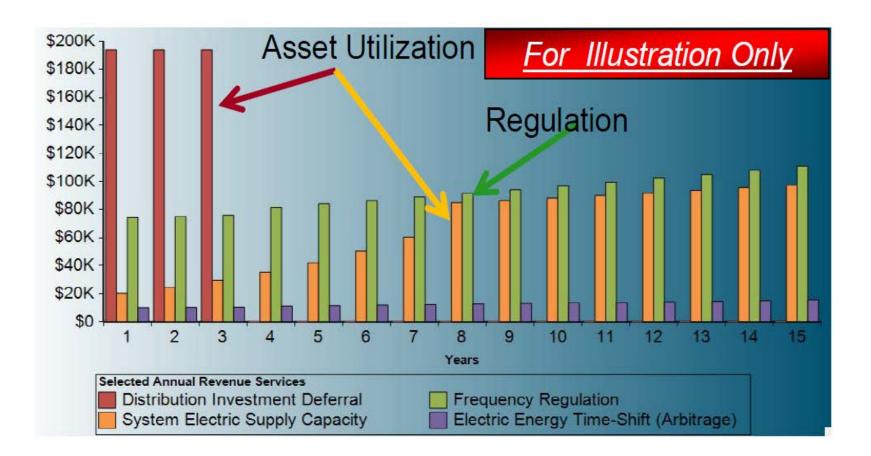
Results: Bulk Peaking Power Plant

Application	Bulk Peaker			2020 Bas	e Case
Benefits	Capacity	³⁰⁰			Frequency Regulation
	Energy	suoillim 250		 	Synchronous Reserve (Spin)
	Frequency Regulation	200			Non-synchronous Reserve (Non-spin)
	Spinning Reserve				System Electric Supply Capacity
	Non-Spinning Reserve	150		-	Electricity Sales
Benefit to		100		 -	Taxes (Refund or Paid)
Cost Ratio	1.17	50			Operating Costs
Breakeven		0			Financing Costs (Debt)
Capital Cost	\$831/kWh (\$1662/kW)	U	Cost	Benefit	Capital Expenditure (Equity)

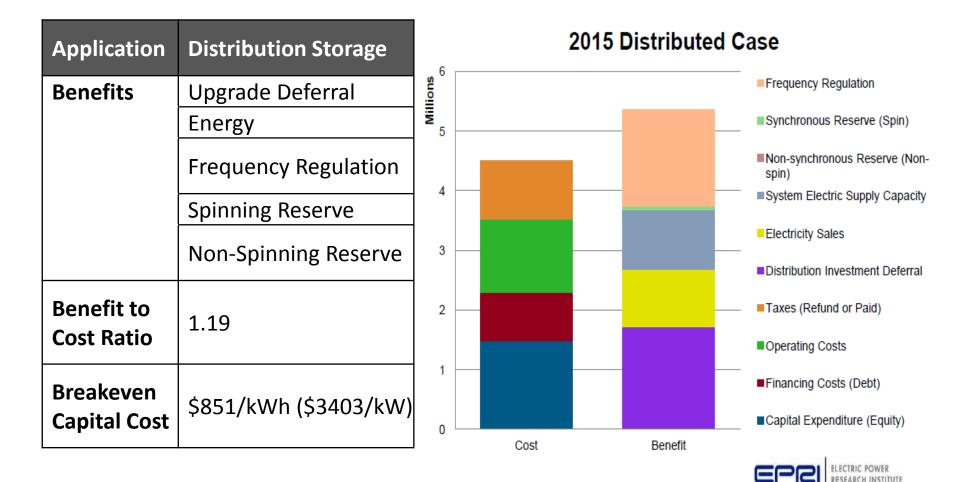


Results: Bulk Peaking Power Plant

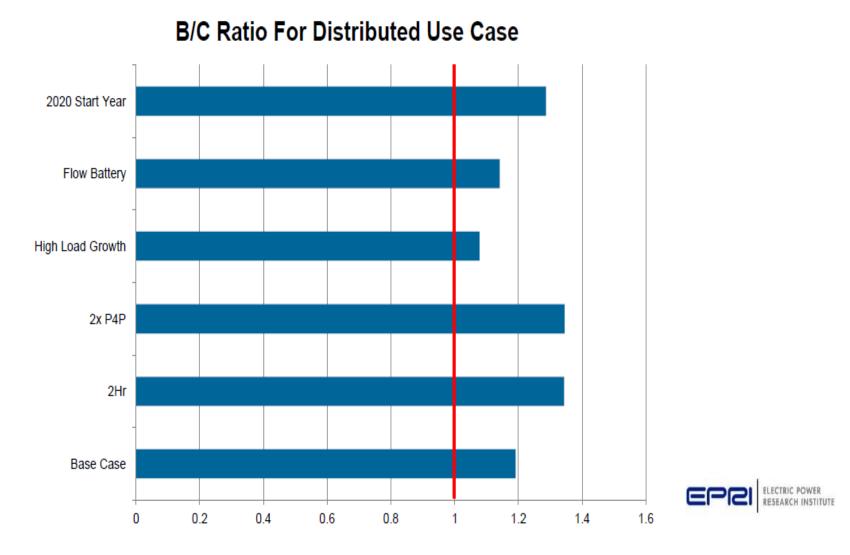
Preliminary results by EPRI using stakeholder input showed a benefit to cost ratio over one for nearly every scenario


Summary of B/C ratio results for Bulk Storage (Peaker Sub) – CPUC Inputs / Costs

- » Projects were assumed to be utility scale projects starting in 2015 and 2020
- Cost effectiveness results did not include GHG benefits of storage or GHG costs due to AB32 implementation
- » High renewable penetration cases had the highest benefit to cost ratios for storage.
- » GHG benefits for storage are greater the more renewables we have on the grid.



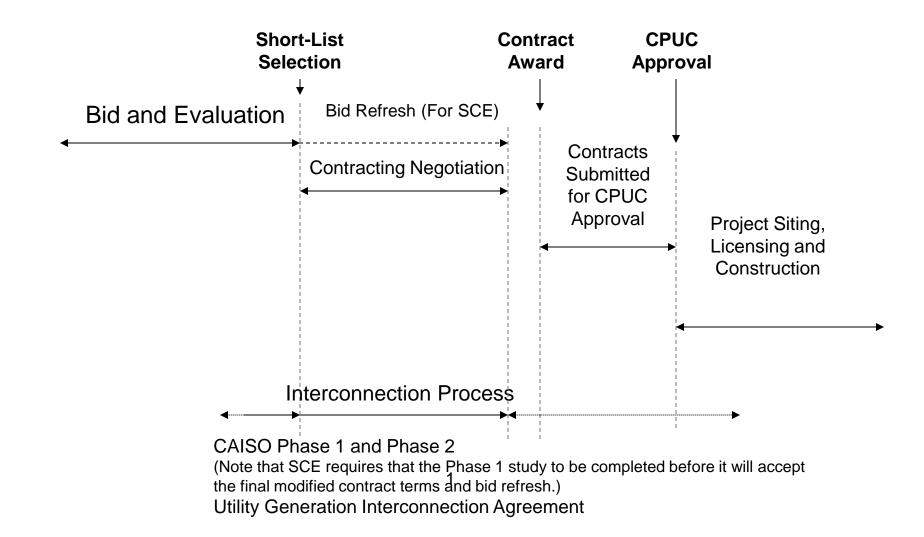
Results: Distribution Storage at Substation



Results: Distribution Storage at Substation

Energy Storage Procurement Targets

Storage Grid Domain Point of Interconnection	2014	2016	2018	2020	Total		
Southern California Edison							
Transmission	50	65	85	110	310		
Distribution	30	40	50	65	185		
Customer	10	15	25	35	85		
Subtotal SCE	90	120	160	210	580		
Pacific Gas & Electric							
Transmission	50	65	85	110	310		
Distribution	30	40	50	65	185		
Customer	10	15	25	35	85		
Subtotal PG&E	90	120	160	210	580		
San Diego Gas & Electric							
Transmission	10	15	22	33	80		
Distribution	7	10	15	23	55		
Customer	3	5	8	14	30		
Subtotal SDG&E	20	30	45	70	165		
Total – all 3 Utilities	200	270	365	490	1,325		


RFO Proposed Schedule for California IOUs

Event	SCE	SDG&E	PG&E
RFO Launch	December 1, 2014	Prior to December 1, 2014	December 1, 2014
Bidders' Conference	December 17, 2014	May conduct 'stakeholder outreach' prior to RFO launch / bidder's conference after	December 18, 2014
Offer deadline	February 16, 2015	Not specified	February 27, 2015
Short-List Notification	April 1, 2015	Not specified	June 30, 2015
Negotiation deadline	August 14, 2015	Not specified	N/A
Final Offer deadline	September 1, 2015	Not specified	N/A
Final Selection	September 20, 2015	Not specified	TBD
Advice Letter or Application Filing	December 30, 2015	Not specified	12 months after shortlist

Source: CPUC Energy Storage Procurement Applications Workshop March 14, 2014

Bidding and Contracting Timeline - Simplified

Net Market Value (PG&E Evaluation Discussion)

Co-optimize Energy, A/S, Variable Cost = Charging/Discharging

+ Net Energy Value

• Value of discharging – cost of charging using projected LMP

+ Ancillary Services Value

•Regulation Up/Down/REM, Spin in a limited market

+ Capacity Value

- •Generic Resource Adequacy using Net Qualifying Capacity
- •Flexible RA using Effective Flexible Capacity

- Variable Cost

- •Variable O&M price applied over *discharge* schedule
- •Includes fuel and start-up costs plus GMC, but not charging cost

- Fixed Cost

- •Sum of capacity payment price times monthly contract capacity
- •Fixed overhead (administrative costs plus cost of CAISO scheduling)

Adjustments for Localized Benefits and Portfolio Effects

+/- Location

- Preference for NP15 projects
- Local Capacity Requirement may warrant premium
- Transmission Network Upgrade Cost
 - •This is past first point of interconnection; cost to interconnect in bid

+ Transmission/Distribution Investment Deferral Value

- •NPV of least expensive non-storage alternative
- •If dual-use, meet reliability need first, remaining hours play in market

+ Increased Efficiency for Fossil Generation

- •Value to smoothing out net load => fewer starts, better efficiency
- •Portfolio-wide benefit, will probably depend on generic characteristics

+ Renewable Generation Curtailment Support

•Also portfolio-wide: benefit of reduced curtailment, increased RPS

Wholesale vs. retail rate treatment is a key issue

Interconnection Type	Storage Input Energy Function	Wholesale vs. Retail	Comments
	1 Storage charging during REM	Wholesale	Includes RTE Losses
	2 Storage charging for Non-REM wholesale market	Wholesale	Includes RTE Losses
Transmission	functions		
Connected	3 Storage charging for Transmission Support activities	Wholesale	Includes RTE Losses
	4 Pre-chilling of a thermal resource that directly offsets chilling at a later time	Wholesale	
	1 Storage charging for REM	Wholesale	Includes RTE Losses
	2 Storage charging for Non-REM wholesale market	Wholesale	Includes RTE Losses
Distribution	functions		
Connected	3 Storage charging for Distribution Support activities	Wholesale	Includes RTE Losses
	4 Pre-chilling of a thermal resource that directly offsets chilling at a later time	Wholesale	
	1 Storage charging during REM	Wholesale	
	2 Storage charging for Non-REM wholesale market functions	Wholesale	
	3 Storage charging to offset customer load	Retail	
Behind the Meter	4 Storage charging to provide Demand Side DR	Retail	
	5 Storage charging to provide Supply Side DR	TBD	
	6 Ancillary battery heating/cooling	Retail	
	7 Pre-chilling of a thermal resource that directly offsets chilling at a later time	Retail	

The biggest dispute is about what is included in Round Trip Efficiency (RTE)

SCE's LTPP Energy Storage Requirement

Resource Type	Track 1 LCR Resources (D.13-02-015)	Additional Track 4 Authorization	Total Authorization
Preferred Resources Minimum Requirement	150 MW	400 MW	550 MW
Energy Storage Minimum Requirement	50 MW		50 MW
Gas-fired Generation Minimum Requirement	1000 MW		1000 MW
Optional Additional From Preferred Resources/Energy Storage Only	Up to 400MW		Up to 400 MW
Additional from any Resource	200 MW	100 to 300 MW	300 to 500 MW
Total Procurement Authorization	1400 to 1800 MW	500 to 700 MW	1900 to 2500 MW

Source: SCE Procurement Authorization And Requirements (Track 1 + Track 4)

SDG&E's LTPP Energy Storage Requirement

Resource Type	D.13-03-029/ D.14-02-016	Additional Track 4 Authorization	Total Authorization
Preferred Resources (including energy storage) Minimum Requirement		175 MW	175 MW
Energy Storage Minimum Requirement		25 MW	25 MW
Additional from any resource	300 (Pio Pico)	300 to 600 MW	600 to 900 MW
Total Procurement Authorization	300 M W	500 to 800 M W	800 to 1100 M W

Source: SDG&E Procurement Authorization and Requirements

Other Utility Procurement

- In January 2014, the Imperial Irrigation District announced a solicitation of 20 to 40 MW of battery energy storage.
- In August 2014, the City of Redding issued an Energy Storage Compliance Plan that approved energy storage targets of 8 MW by 2020.

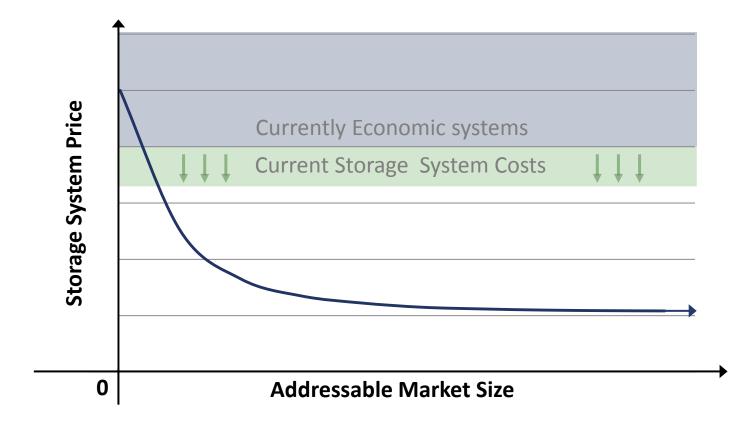
Procurement Outside California

» Hawaii

- HECO issued 200MW storage RFP (April, 2014)
- HELCO issues 92% renewable plan (Sept, 2014)
- » New York ISO Reforming the Energy Vision (REV) Initiative
- » PJM Nearly 100MW of storage already on the grid
- » Arizona APS and the Residential Utility Consumer Office (RUCO) settlement requires energy storage evaluation in procurement
- » Puerto Rico All new renewables projects must include specific storage capabilities, but politics are challenging.
- » **ERCOT** Conducting stakeholder process to redesign ancillary services market
- » Northwest US
 - Washington State \$14m matching grant to deploy storage (July 14')
 - Oregon PGE owns a 5MW Li-ion project/ DOE accepting considerations on funding storage.

Utility Use Cases

		Transmission Deferral & NERC Reliability
	Standalone	Dual Use (Partial Rate Based, Partial Market Participant)
		Bulk Peaker (Energy & AS)
		AS Only
Transmission		Storage with wind
Sited		Storage with PV
	Concentrate Delived	Molten salt storage with Concentrating Solar
	Generator Paired	Thermal + Turbine Inlet Chilling or CAES
		Hybrid Thermal + Fast Response Storage
		Thermal + Oxygen Chilling
Distribution	Standalone	Distribution Upgrade Deferral
	Standalone	Community Energy Storage
Sited	Generator Paired	Community Energy Storage + Renewables
	Bill Management & Demand Response	Business Customer, Peak/Max Demand Mgt.
		Residential Customer, TOU Bill Management
		Residential Customer, Solar Integration and bill management
		Aggregated C&I / Virtual Net Meter Solar + Storage
		Multi-family Residential, Solar and Demand Mgt.
Customer Sited	Bill Management +	Business Customer, Bill + Market Participation
Customer Sited	Market Participation	Residential Customer, Bill + Market Participation
	Utility Controlled	Grid Operation Benefits – Distribution Upgrade Deferral
		Solar + Storage + EVs with bidirectional mkt participation
	EV Charging	Storage + EVs with bidirectional mkt participation
	EV Charging	EV Aggregated Charging with Market Participation (V1G)
		EV Aggregated Charging/Discharging with Market Participation (V2G)
26		

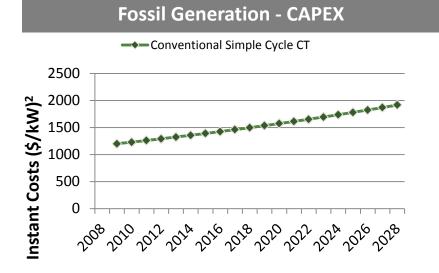

» The current structure identifies the critical issues as shown:

					Bar	riers			
Actions		Ancillary services	Financial	Interconnection	Market and regulations	Metering	Modeling	Standards	Telemetry
	Defining and communicating grid needs will clarify gaps help identify new products		Х	Х	Х				
>	Clarify existing wholesale market product opportunities for storage	Х	Х		Х				
nit	Refine existing and add new wholesale market products to meet grid needs				Х				
Tro I	Identify gaps in rate treatment and identify existing rules that could address issues	Х	Х		Х				
e oppo	Define multiple-use applications of storage to facilitate development of models and rules		х		х				
Revenue opportunity	Determine hybrid storage configurations to enable prioritization and development of requirements		х		х		х	х	
ě.	Assess existing methodologies for evaluating storage and identify or develop a preferred common methodology		х				х	х	
_	Review metering requirements for opportunities to reduce costs					Х			Х
tion	Review telemetry requirements for opportunities to reduce costs							Х	
Cost reduction	Assess codes and standards to identify gaps and best practices			Х	Х	Х			Х
re(Review interconnection process for small distribution-connected resources			Х					
Proces s and timing	Clarify interconnection processes to make it predictable and transparent			x					

Conceptual View of the Storage Market

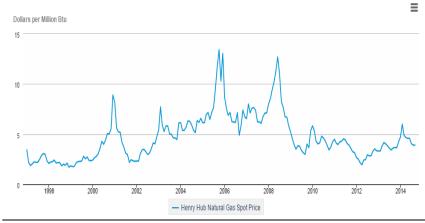
» Storage is economic today in locations and applications with high value

- » As costs go down, the number of applicable applications and markets grows
- » The process accelerates if we give the learning curve a gentle push

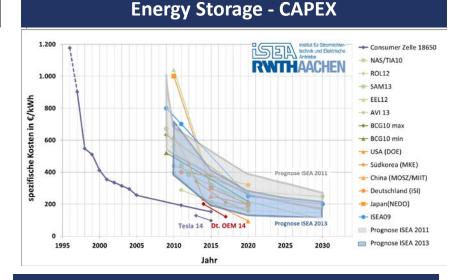


What is at stake?

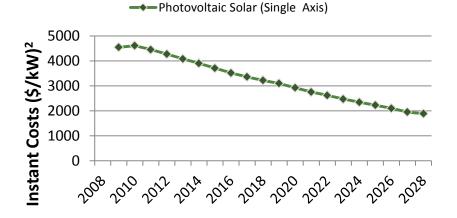
- » Greater system flexibility without changing customer behavior
- » Faster response from grid assets
- » Improved customer reliability
- » Greater energy security
- » Lower emissions
- » Better renewable integration
- » Opportunity to "leapfrog" traditional grid in developing regions



Which technologies should we invest in?



Fossil Generation – Fuel Cost³


Henry Hub Natural Gas Spot Price

- 30 1. Source: California Energy Commission
 - 2. 2009 starting dollars, escalated at 2.5% per year
 - 3. US Energy Information Administration

Energy Storage – Fuel Cost¹

Vielen Dank!

Chris Edgette, Senior Director

- Email: <u>cedgette@strategen.com</u>
- Office: +1 510 665 7811 x 102
- Mobile: +1 415 424 8475

