DC-based Open Energy System: A Bottom-Up, Distributed Power System for Self-Sustaining Islands

Mario Tokoro Sony Computer Science Laboratories, Inc.

Our Fundamental Thought

Sustainable Do not pass on liability to next generation

Dependable Keep risk manageable

Affordable

Accessible to everyone on earth

Conventional Power Systems

Our Approach

SustainableRenewable Energy Sources, which areDistributed, Intermittent, and Unstable, with
Batteries

DependableLocal Consumption of the Locally Producedby Self-Supporting as much, in the form of
Bottom-Up, Autonomous, and Interconnected

Affordable

System can start Small yet Expandable in the form of Bottom-Up, Autonomous, and Interconnected

Conventional systems

- *Centralized* energy source
- Transmission for *distant* consumption
- *Top-down* configuration with central control
- Flow based, *synchronous* load/supply balancing
- Distribution network

Open Energy Systems

- *Distributed* energy sources
- *Local* consumption of the *locally produced*
- *Bottom-up* and flexible configuration of distributed autonomous systems
- Stock based, *asynchronous* load/supply balancing
- *Exchange* network

How do we achieve OES? DCOES Technologies

Renewable Energy Sources

Batteries / Energy Storage

How to balance?

Batteries cannot take whole energy produced by PV

Variety in usage pattern

Energy Exchange Technology

Exchange energy among *batteries* In the form of **DC**

In order to *maximize* the use of PV panels and batteries

through complementing *difference* in usage patterns

AC for transformers

- Reactance loss of power is
 Ef
 - not negligible
- Interconnection of networks is difficult due to sync.

• Efficient DC/DC converters are now available

for batteries

DC

 Interconnection of networks is easy (no sync. is necessary)

Base Theory

Constant Voltage Source keeps the grid voltage at 350V Constant Current Sources set desired current

One Voltage Source and n Current Sources with *Durable* and *Flexible* Distributed Control

m-to-n Energy Exchange

Set the Grid to 350V by CV mode (#0) **Deal 1:** Send energy from #1 -> #3 **Deal 2:** Send energy from #4 -> #2, #5

©2015 Sony Computer Science Laboratories, Inc.

DC/DC converter can have 3 modes:

- Waiting (stop)
- Constant Voltage mode (CV)
- Constant Current mode (CC)

Energy Exchange Policies

- Baseline policy
 - Capacity available for giving/receiving
 - Request for consumption
- Advanced policies
 - Prediction based on past usage tternequest
 - Weather forecast for generati
 - Dynamic pricing

Power Exchange Network

Scalable Architecture

Most exchanges happen at the lowest level!

Video 1

DCOES@0IST20 System Structure (1)

• Configuration of each house

DCOES@OIST20 System Structure (2)

Energy Server System

- SONY 48V Li-lon battery modules
- 350V Grid
- Energy exchange module, DCDC
- DC to AC inverter for appliances
- AC backup by utility company

350V DC Power Lines (Privately Owned)

Video 2

Performance Evaluation

Performance Evaluation

Distributed stand-alone

Centralized

Bottom-up by individuals

- Flexible in size and variety with incremental costs
- Failures do not cause total system outage
- May not be efficient overall

©2015 Sony Computer Science Laboratories, Inc.

Top-down by a single entity

- Fixed in size with high initial costs
- Single failure may cause total system outage
- Efficient for a predefined users and usage patterns

DCOES: Distributed System with Energy Exchange

Variety in usage pattern (Winter)

Variety in usage pattern (Spring)

Performance Result and Estimation (Current OIST configuration with baseline policy)

2015/1/1-1/31

Winter: Real OIST Data (19 houses) *Spring*: Real OIST Data (19 houses) *Summer*: Simulation (19 houses) 2015/4/16-5/16 2015/7/16-8/15

Performance Result and Estimation (Solar x2, Battery x2 with baseline policy)

2015/1/1-1/31 2015/4/16-5/16

Winter: Real OIST Data (19 houses) Spring: Real OIST Data (19 houses) Summer: Simulation (19 houses) 2015/7/16-8/15

Next Plans

DCOES/LV for Houses in a Community

350V DC Line PV: 3-5kWp Batt.: 5kWh

DCOES/MV for Larger Communities

DCOES/MV for Buildings

1KV DC Line PV: 100kWp Batt.: 500kWh

DCOES/HV for Self-Sustaining Island

DC-based Open Energy System: A Bottom-Up, Distributed Power System for Self-Sustaining Islands

Acknowledgements

Sony Computer Science Laboratories, Inc. H. Kitano, Y. Tokuda, S. Tajima, T. Yoshimura, Y. Ishibashi, T. Morita, A. Werth, D. Kawamoto, D. Yanagidaira, N. Matsuda, A. André

Okinawa Institute for Science and Technology

T. Sakagami, K. Kuwae, M. Nishimura, H. Kitano, J. Dickison

Okisokou Co. Ltd K. Nishime, Y. Toma, H. Yoshida, Y. Ohshiro, Y. Higa, T. Nagata

> Sony Energy Devices Corporation Sony Business Operations Sony Corporation

JICA (Japan International Cooperation Agency) MOE (Ministry of the Environment), Japan Okinawa Prefecture Government, Japan