Clean Energy Systems for Islands: Insights from IEA Analyses

Eric Masanet
Head, Energy Demand Technology Unit
International Energy Agency

Tokyo, Japan
5 October 2015
Contribution of technology area to global cumulative CO2 reductions

The 2DS remains within reach, with energy efficiency remaining the most significant opportunity
The energy system of the future will integrate the sources of and requirements for energy from all parts of the energy system.
The 2DS is based on an integrated energy systems modeling approach

Enables assessment of least-cost pathways to climate change mitigation across energy supply and demand systems
Contribution of technology area to global cumulative CO2 reductions

TECHNOLOGIES
- Nuclear 8%
- Renewables 30%
- End-use fuel switching 10%
- CCS 13%
- Power generation efficiency and fuel switching 1%
- End-use fuel and electricity efficiency 38%

Emissions with 2DS
Emissions with 6DS

Source: ETP 2015

Energy efficiency remains the most significant opportunity!
Output - Energy efficiency: the ‘first fuel’ savings larger than the contribution of any other fuel to TFC in 2012

*IEA-11: Australia, Denmark, Finland, France, Germany, Italy, Japan, Netherlands, Sweden, United Kingdom, United States
Output - Energy efficiency: the ‘first fuel’
savings larger than the contribution of any other fuel to TFC in 2012

Hypothetical energy use had there been no energy efficiency improvements

Total Final Consumption (TFC)

*IEA-11: Australia, Denmark, Finland, France, Germany, Italy, Japan, Netherlands, Sweden, United Kingdom, United States
Energy efficiency makes economic sense

Note: The curve presents an estimate of the maximum potential of all technical GHG abatement measures below €80 per tCO₂e if each lever was pursued aggressively. It is not a forecast of what role different abatement measures and technologies will play.

Source: Global GHG Abatement Cost Curve v2.1
A multiple benefits approach to energy efficiency reveals a broad range of potential positive impacts.
Integrated and intelligent energy network of the future

The energy system of the future will integrate the sources of and requirements for energy from all parts of the energy system.
Global buildings direct energy use and CO2 emissions by energy source

The residential sub-sector consumes about three-quarters of direct energy in the global buildings sector.

Note: GtCO₂ = gigatonne of CO₂.
About 70% of buildings energy consumption is for space heating and appliances in cold climates, and for water heating and cooking in moderate and warm climates.
Importance of Energy Efficiency

Global building emissions growth and savings potential to 2050

Source: IEA Energy Technology Perspectives 2014

Final energy demand (EJ)

- Other (Services)
- Appliances
- Cooking
- Lighting
- Water heating
- Space cooling
- Space heating

2015 2020 2025 2030 2035 2040 2045 2050
Global energy efficiency potential

- Potential to reduce final energy use for space heating & cooling through energy efficiency

Source: IPCC 2014
EEI accounts for different sizes/types giving a comparable efficiency metric

Same graph overlaid with EU label boundaries
Regional priorities in the buildings sector

<table>
<thead>
<tr>
<th>Technology</th>
<th>ASEAN</th>
<th>Brazil</th>
<th>China</th>
<th>European Union</th>
<th>India</th>
<th>Mexico</th>
<th>Russia</th>
<th>South Africa</th>
<th>United States</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advanced envelope – cold climate (highly insulating windows, air sealing and insulation)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reduced cooling loads – hot climates (reflective technologies and advanced cooling equipment)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heat pumps (water heating and/or space heating and/or space cooling)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Solar thermal (water heating and/or space heating)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>More efficient use of biomass (more efficient cooking and water heating, and leading to modern biogas)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Policy

<table>
<thead>
<tr>
<th>Technology</th>
<th>ASEAN</th>
<th>Brazil</th>
<th>China</th>
<th>European Union</th>
<th>India</th>
<th>Mexico</th>
<th>Russia</th>
<th>South Africa</th>
<th>United States</th>
</tr>
</thead>
<tbody>
<tr>
<td>Building codes with supporting infrastructure (education, product ratings, and implementation to pursue holistic approach with advanced envelopes)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Appliance and equipment standard (promoting advanced appliances, lighting, heat pumps, heat pump water heater, gas condensing boilers, miscellaneous electrical loads, efficient cooling)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Deep renovation of existing buildings (systems approach with advanced envelopes and high-performance equipment)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zero-energy new buildings (advanced holistic building design with integrated renewable energy)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes: red indicates immediate priority, while gold indicates second priority. This is not intended to be an exhaustive list, but intentionally shows the immediate priority for technology and policy, along with a second goal, to help highlight which technologies and policies will have the largest impact in the country or region. Most of the technology and policy categories could be applicable to all countries.
Energy consumption in transport

World transport energy use by mode, 1971-2012

- Road transport modes account for most energy consumption
- The share of road in total transport final oil use has grown from less than 50% in 1973 to nearly 76% in 2012
Transport & energy policies

Fundamental concepts

AVOID unnecessary trips
REDUCE km

SHIFT modes

IMPROVE vehicles
low carbon fuels
Transport & energy policies

Fundamental concepts

Avoid unnecessary travel

– Urban design & transport integration in land use planning: shorter trips in high density, mix-use cities

– Congestion pricing and other fees (e.g. parking): higher transport costs reduce total pkm

– Logistics: better use of available capacity reduces total tkm
Transport & energy policies
Fundamental concepts

Shift travel to more efficient modes

– Urban design & transport integration in land use planning: transit-oriented developments promoting walking, cycling and the use of public transport

– Congestion pricing, access restrictions, parking fees targeting primarily more energy-intensive modes, combined with subsidies for public transport

– Travel demand management to avoid traffic peaks

– Logistics and intermodal terminals: wider potential for co-modal goods
Transport & energy policies
Fundamental concepts

Improve the energy efficiency of each mode

- Standards/regulations (e.g. on fuel economy, pollutant emissions, vehicle speed) and fiscal charges/incentives to promote the introduction of energy efficient and more sustainable technologies on vehicles in all modes (market pull)
Specific fuel consumption of vehicles
Evolution from 2005 to 2010, light passenger vehicles (cars)

- The evolution of the specific fuel consumption of vehicles influences the way energy demand develop with respect to transport activity.
- Light passenger vehicles experienced some improvement in recent years.
Transport & energy policies
Fundamental concepts

Improve the energy efficiency of each mode

- Standards/regulations (e.g. on fuel economy, pollutant emissions, vehicle speed) and fiscal charges/incentives to promote the introduction of energy efficient and more sustainable technologies on vehicles in all modes (market pull)
- Support research to reduce the costs of advanced vehicle technologies (technology push)
Stakeholders plan to increase the global market share of electric vehicles in cities to reach at least 30% by 2030.
Transport & energy policies

Fundamental concepts

Improve the energy efficiency of each mode

– Standards/regulations (e.g. on fuel economy, pollutant emissions, vehicle speed) and fiscal charges/incentives to promote the introduction of energy efficient and more sustainable technologies on vehicles in all modes (market pull)

– Support research to reduce the costs of advanced vehicle technologies (technology push)

– Support behavioral changes resulting in more efficient use of vehicles (high occupancy, energy efficient driving) and virtuous consumer choices to contain costs (e.g. smaller vehicles)
The IEA Mobility Model

ETP analysis

- Scenarios allowing to reduce GHG emissions to 2000 levels in 2050
... energy balances, coupled to macroeconomic information, explain basic energy consumption patterns

Data for IEA 20 (Australia, Austria, Canada, Czech Republic, Denmark, Finland, France, Germany, Hungary, Ireland, Italy, Japan, Netherlands, Norway, Slovakia, Spain, Sweden, Switzerland, UK, USA).

Source: IEA energy balances.
... but we need more disaggregated data to get the full picture

Residential Energy Consumption Index (IEA 20)

* Temperature correction using heating degree days

Data for IEA 20 (Australia, Austria, Canada, Czech Republic, Denmark, Finland, France, Germany, Hungary, Ireland, Italy, Japan, Netherlands, Norway, Slovakia, Spain, Sweden, Switzerland, UK, USA).

Source: IEA energy indicators database.
ETP 2016: integrating local and national energy policies

NATIONAL ENERGY POLICIES

LOCAL ENERGY POLICIES

NATIONAL BEHAVIORAL TRENDS

URBAN BEHAVIORAL CHANGES

NATIONAL INFRASTRUCTURE

URBAN DEVELOPMENT

NATIONAL TECHNOLOGY DEPLOYMENT

DIFFUSION OF SUSTAINABLE ENERGY TECHNOLOGIES IN CITIES

NATIONAL SUSTAINABLE ENERGY TRANSITIONS

URBAN SUSTAINABLE ENERGY TRANSITIONS
Sustainable urban buildings incorporate building envelope solutions adapted to denser built environment; district heating
Meeting thermal comfort demand in dense urban areas in a sustainable way requires informed planning decisions from policy-makers.
A significant portion of travel can be avoided or substituted by more efficient modes and lower carbon options.
A few IEA global technology collaboration initiatives …

The work included in Industrial Energy-Related Technologies and Systems (IETS) ranges from specific developments of process or energy technologies to overall system aspects, in which energy efficiency is an important part, for practically all types of industry types.

The Energy in Buildings and Community (EBC) Programme carries out research and development activities toward near-zero energy and carbon emissions in the built environment. These joint research projects are directed at energy saving technologies and activities that support technology application in practice.

The Efficiency of End-Use Equipment (4E) IA supports sound policy development in the field of energy efficient appliances and equipment.

The IA for co-operation on Hybrid and Electric Vehicle Technologies and Programmes (IA-HEV) enables member parties to discuss their respective needs, share key information, and learn from an ever-growing pool of experience from the development and deployment of hybrid and electric vehicles.

... 14 IEA Implementing Agreements related to energy end uses and efficiency

https://www.iea.org/aboutus/standinggroupsandcommittees/cert/euwp/