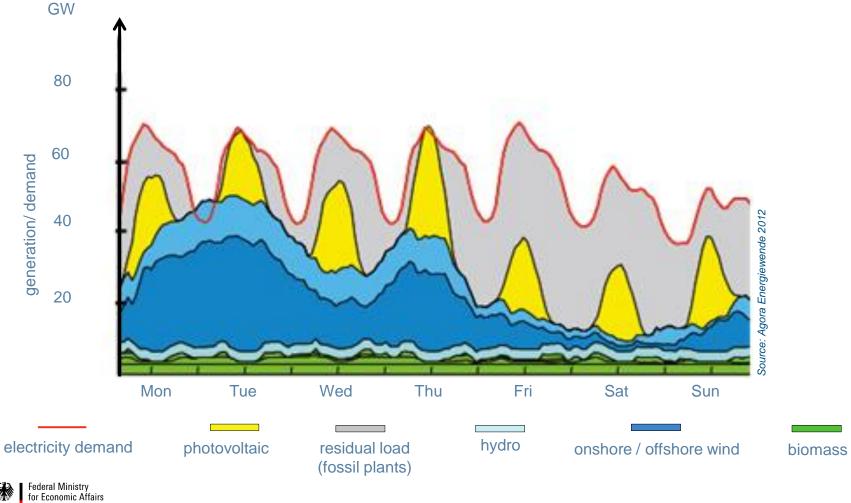


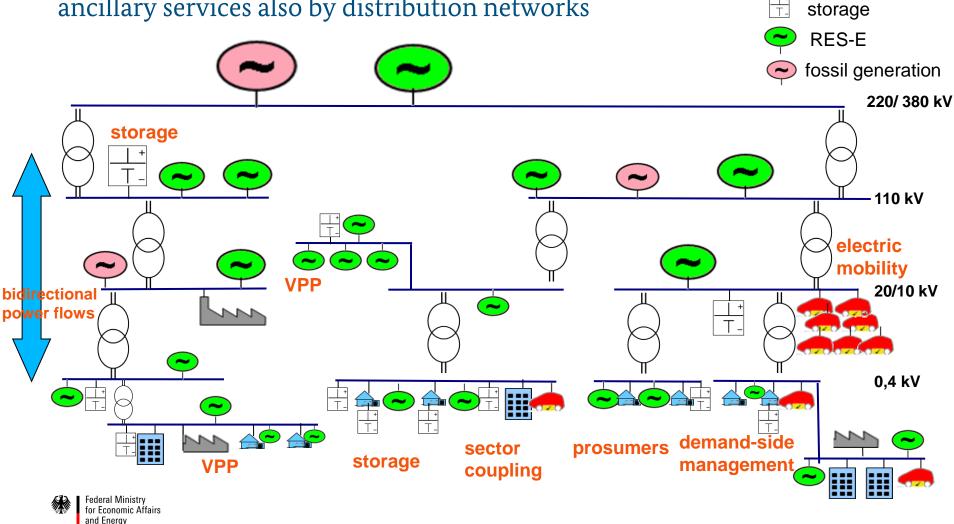
Digitisation of the energy transition in Germany


Alexander Folz, M.Sc.
Head of the SINTEG programme
Federal Ministry for Economic Affairs and Energy

IEA workshop on Digitalisation and Energy

5 April 2017, Paris, France

Germany's electricity system in 2022: exemplary summer week



Energy system of the future:

flexible demand-orientated generation

+ flexible generation-orientated demand, ancillary services also by distribution networks

Act on the Digitisation of the Energy Transition

- gradual phase in of smart meters in DE:
 - large-scale consumers and generating installations (start 2017)
 - smaller consumers later (start 2020)
- Smart meter: **intelligent metering systems** = digital meter + communications unit (smart meter gateway SMG)
- Aim: development of a digital infrastructure
 - → provide a secure **communication platform** = **data hub**
 - → Connect all players of the energy system:
 - consumers, generators, smart home, ...
 - system operators, utility, aggregators,...
- heavy focus on data protection and data security (e.g. "privacy by design")
- Act is start → now development of specific use cases and products necessary

The SINTEG programme: "Smart Energy Showcases – Digital Agenda for the Energy Transition"

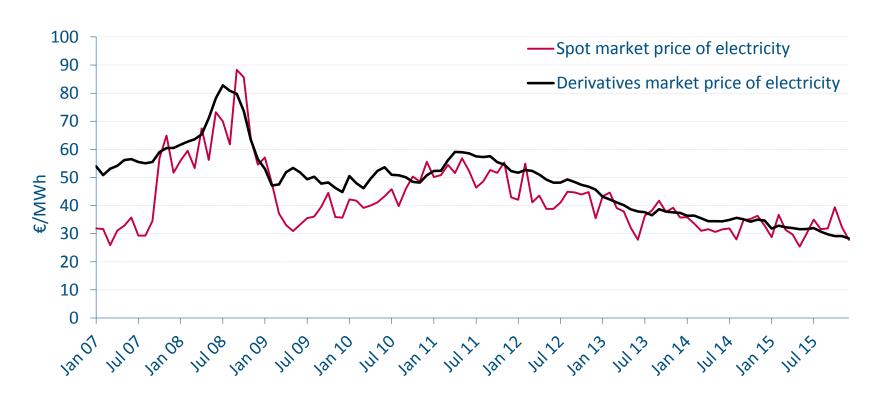
- Overall aim: develop solutions for a secure and efficient energy system relying on temporarily up to 100% of RES
- focus: connect generation, demand side, storage, grids and market using ICT → smart grids/ market
- Solutions are to be implemented in five large pilot regions (showcases)
 - → scalability/ preparing mass market
 - → pilot solutions for our future energy system (e.g. market platforms, sector coupling, ancillary services, TSO-DSO cooperation,...)
- more than 300 firms + other players involved; Start: 12/2016 + 01/2017
- Volume of funding: more than € 200 million; firms provide more than € 300 million → some € 500 millions to be spent on smart grids
- Solutions are to serve as a blueprint for wider use
- "regulatory sand box": gain experience → information on necessary adjustments to the regulatory framework → upcoming amendments
 - of the German government's "digital agenda"

 Digitisation of the Energy Transition | 05.04.2017, IEA workshop on Digitalisation and Energy, Paris

Thank you for your attention!

Alexander Folz, M.Sc.
Head of the SINTEG programme
Federal Ministry for Economic Affairs and Energy
Division III C 4 - Flexibility of Demand,
Technical System Integration, Storage Tel: +49 30 18 615 6904

Email: Alexander.Folz@bmwi.bund.de


back up

Source: Ecofys 2015, EEX 2015

Electricity price in Germany (stock exchange)

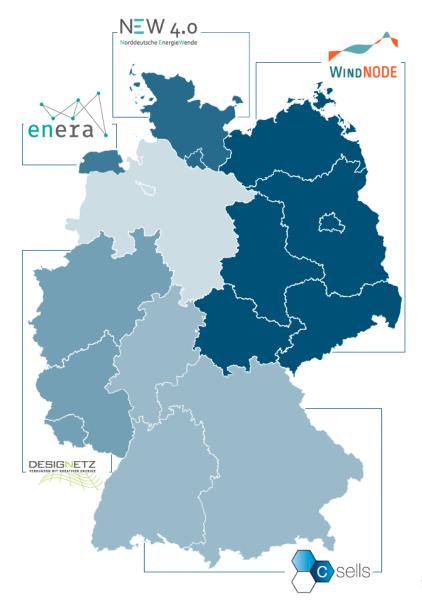
Electricity prices have declined and volatility sank over the past years.

Source: Federal Government 2010, BMU/BMWi 2014, BMWi 2015, AGEE-Stat 2014, AGEB 2015, BMWi 2016

Germany's "Energiewende" targets until 2050

		Achieved 2014	2020	2025	2030	2035	2040	2050
Climate	% greenhouse gas reduction (vs. 1990)	-27%	-40		-55		-70	-80 to -95
Renewable Energies	% gross electricity consumption	32.6% (2015)	35	40 to 45	50	55 to 60	65	80
	% gross final energy consumption	13,7%	18		30		45	60
Energy Efficiency	% primary energy consumption (vs. 2008)	- 7.3 % (2015)	-20					-50
	final energy productivity (vs. 2008)	1.7% p.a.		+2.1% p.a. (2008-2050)				
	building renovation	~1% p.a.		doubling of renovation rate: 1% → 2% p.a.				
	% transport energy consumption (vs. 2008)	1.7%	-10					-40

Development of installed capacity of RES-E in Germany



(data source: NEP 2014, Szenariorahmen)

SINTEG Showcase regions

Showcase regions

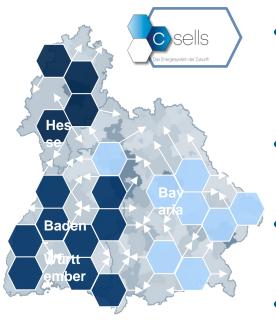
- In common: show cases cover the entire smart energy system of the future
 - Efficient and secure grid operation with high shares of renewables
 - tapping efficiency and flexibility potentials (in terms of markets and grids)
 - Ensuring efficient and secure cooperation of all players in the smart energy system → data explosion
 - New business models in the energy sector
- Each of the project has different points of focus

Showcase regions

Examples

- Feeding regional information into the electricity market/stock exchange
 → 'regional order books'
- several hundred MW of demand-side management across different sectors (PtH, PtC, PtG), e.g. to use excess electricity within the region
- Use/roll-out of > 300,000 iMSys
- ICT platforms for networking/coordination
- 800 supermarkets to act as flexible consumers
- Energy transition AppStore for players involved (across different sectors, e.g. to help increase the energy performance of buildings)

Selected showcase regions



No.	Title	Partners involved in project (associated partners/contractors)		
1	C/sells: large-scale showcase in the 'solar arch' region in southern Germany	53 (15)		
2	Designetz : a modular concept – from isolated solutions to an efficient energy system	35 (14)		
3	enera: The next big step in the energy transition	32 (19)		
4	NEW 4.0: The energy transition in northern Germany	37 (11)		
5	WindNODE: showcase for smart energy from the north-east of Germany	49 (16)		

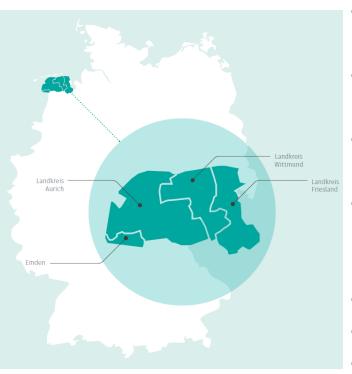
C/sells – the solar arch in the south

• 1,200 MW of load, 1m consumers, 15,000 distributed PV installations (500 MW); 200 electric vehicles, 1,000 controllable electric heating systems, 600 controllable loads

- Looks at flexibility across different sectors using an energy system organised in cellular form (subsidiary within and across cells)
- Autonomous regional cells that interact at supraregional level
- Cloud-based infrastructure information system (IIS) serving as an ICT platform
- Expanding regional markets for ancillary services
- Flexibility between electric power, heat and transport

Designetz – a modular concept

- Rural renewables vs. industrial centres of demand → typical situation in DE
- Distributed energy (mix of solar and wind) to be used to supply industrial centres of demand


- Responsibility for the system across grid levels
- Cascading, bidirectional procedure:
 - Requests for greater flexibility to be made by higher grid levels to lower grid levels
 - Lower grid levels provide projections of grid condition and of scope for flexibility
- Use of iMSys, sensors and actuators to assess the state of distribution networks and to control (including data from some 100,000 metering systems)
- includes gas and heat (PtG, PtH etc.)

Enera – the next big step

- Share of renewables > 170% (wind, PV, biogas)
- 390,000 inhabitants, approx. 200,000 households, 1.75 GW RES-E (onshore wind: 1.5 GW, offshore wind: 175 MW; another 1,000 MW envisaged)


- Transition to a dynamic, distributed energy system
- Increasing flexibility of distributed generators, loads, storage
- Regional ancillary services to be treated as tradable, regional goods (e.g. voltage stability)
- Feeding in regional information into the electricity exchange to support distribution networks
- Rollout and management of 40,000 iMsys
- 'Smart Data and Services' platform
- 30-60 start-ups to develop new business models for a smart energy system for the future
- 'Energy transition AppStore'

NEW 4.0 – energy transition in the north

- large centre of energy demand (Hamburg) with rural region as centre of supply of wind energy (Schleswig-Holstein)
- Project is to demonstrate that 70%-share of renewables in region's supply providing full energy security will be possible by 2025

Main objective: finding efficient ways of dealing with local surplus electricity

Two-way strategy:

- better export to other regions;
- greater flexibility to use energy locally
- Greater flexibility mainly by means of **demand-side** (load management, storage, sector coupling (100s of MW)
- Minimising 'must-run capacity' of conventional power plants with the help of innovative ancillary services, DSM and flexible CHP

WindNODE –smart energy from the noth-east of Germany

- Balancing zone of 50 Hertz (excluding Hamburg)
- Thousands of controllable loads, > 150 MW
- Installed renewables capacity (in 2014): 25 GW (59% wind, 33% PV),
- 42%-share of renewables in electricity consumption

- Optimisation of overall system: electricity, heat, mobility
- ICT platform connects generators, loads, grids, markets and provides for flexibility (e.g. flexible industrial loads, PtX, electric mobility, distributed small-scale generators)
- More than 800 supermarkets involved, which will act as flexible loads
- New system operation TSO-DSO
- "Regional power plants"/ VPP
- Urban-rural energy cooperation (Berlin and Brandenburg)
- Greater system responsibility assigned to balance responsible parties (BRP) and aggregators

