

Why integrate power systems?

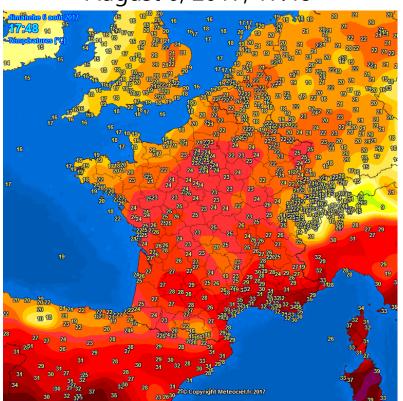
Lessons from Electricity Security Across Borders

Matthew Wittenstein Long Beach, CA, August 20, 2018

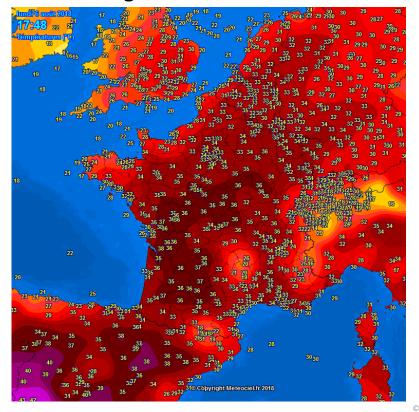
Some context: introducing the Electricity Security Action Plan 2.0

ESAP 1.0

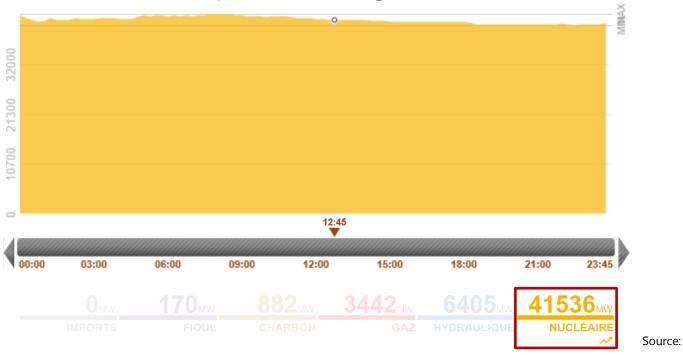
- IEA Ministerial 2011 called for work on electricity security in a context of higher VRE shares in power systems
- Key outputs since then include:
 - Creation of the Advisory Panel in 2015 (8 meetings and other related workshops);
 - Publication of several insights papers and **Re-powering Markets** the first IEA official publication on electricity market design
 - Country support: Thailand Electricity
 Security Assessment; contributed to
 Australia's Finkel review.


ESAP 2.0

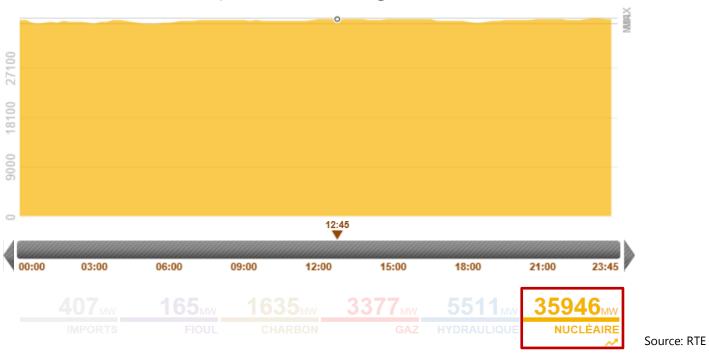
- In 2017 the IEA's mandate on electricity security was re-affirmed and expanded
- ESAP 2.0 seeks to examine:
 - How to maintain electricity security in an environment of rapidly expanding VRE and, in some jurisdictions, earlier than expected exits of existing capacity
- Many jurisdictions (both IEA members and non-members) see the opportunity for, and challenges associated with, cross-border power system integration
 - It is therefore a key component of ESAP 2.0


Case study: extreme temperatures in France

August 6, 2017, 17:48

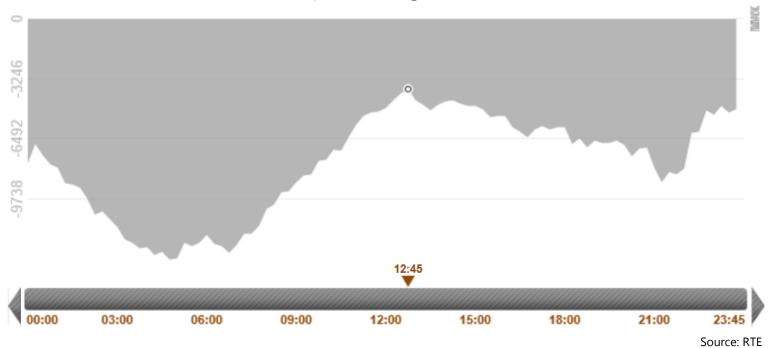

August 6, 2018, 17:48

Nuclear in France on a typical summer day


Source: RTE

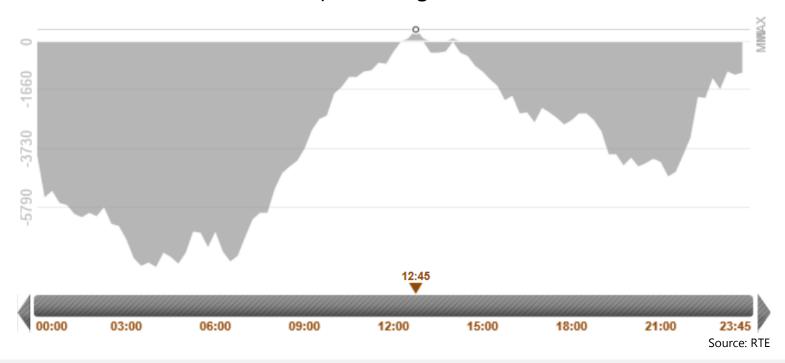
Because demand is lower, nuclear plant maintenance is often scheduled for the summer months.

Nuclear in France after a period of extremely high temperatures



Due to the unusually high temperatures, 5.5 GW of nuclear power was forced to shutdown.

From net exporter...



In August, France is nearly always a net exporter of electricity

...to net importer

Net imports, August 6, 2018

While net imports were, at their peak, small (407 MW), the fact that France was a net importer during the summer is highly unusual.

Why do we care?

- Though France became a net importer, it was for a short time and quantities were limited – so what does it matter?
- Trade between European countries is determined entirely by economics (i.e. price differentials)

	France	Germany/Austria	Switzerland	UK
August 1	58.22	58.22	58.02	60.02
August 6	62.36	62.36	63.34	61.13

Source: EpexSpot, Nord Pool Spot

 A number of EU countries have introduced capacity products but, at present, there is no way to trade capacity across borders.

Electricity Security Across Borders: a few key messages

- While the economic benefits of cross-border power system integration are well recognized, the security implications remain under considered
 - As a result, jurisdictions continue to work under the assumption that imported power is inherently less secure than that from domestic/local resources
- Integration efforts are more successful when there is active information sharing and close coordination of long-term planning
 - Key elements include regular joint planning exercises and data harmonisation, coordinated by a single (central) entity
- Increasing cross-border integration combined with increasing renewables deployment is leading to increasing pressure to centralize power system operations
 - At a minimum, increased data sharing (especially **closer to real-time**) is required.
- Cross-border power system integration must adapt to heterogeneous preferences
 - While it may be more optimal to have coherent, consistent policy and regulatory frameworks across all interconnected jurisdictions, in practice these will always remain divergent

Next steps: 2018 ESAB publication

- Later this year the IEA will be releasing an Electricity Security Across Borders publication
 - Drawing on a wide range of case studies and workshops (like this one!)
- Key elements of focus:
 - Drivers of, and obstacles to, power system integration
 - Economics, security, renewables integration
 - Governance
 - Institutions, legal issues, market frameworks
 - Resource adequacy (i.e. long-term coordination)
 - Developing interconnectors, allocating interconnector capacity, regional planning, cross-border implications of local policies, capacity trading
 - System security (i.e. short-term coordination)
 - Energy trading, real-time operations, reliability standards

