Digitalization & Energy

Webinar – 7 February 2018
<table>
<thead>
<tr>
<th>Speakers</th>
<th>Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dave Turk</td>
<td>Director (Acting) of Sustainability, Technology and Outlooks</td>
</tr>
<tr>
<td></td>
<td>Co-Lead, IEA Digitalization Working Group</td>
</tr>
<tr>
<td>George Kamiya</td>
<td>Energy Environment Division</td>
</tr>
<tr>
<td>Thibaut Abergel</td>
<td>Energy Technology Policy Division</td>
</tr>
<tr>
<td>Jacob Teter</td>
<td>Energy Technology Policy Division</td>
</tr>
<tr>
<td>Kira West</td>
<td>Energy Demand Outlook Division</td>
</tr>
<tr>
<td>Christophe McGlade</td>
<td>Energy Supply Outlook Division</td>
</tr>
<tr>
<td>Carlos Fernández Alvarez</td>
<td>Gas, Coal & Power Markets Division</td>
</tr>
<tr>
<td>Brent Wanner</td>
<td>Energy Demand Outlook Division</td>
</tr>
<tr>
<td>Luis Munuera</td>
<td>Energy Technology Policy Division</td>
</tr>
<tr>
<td>Jan Bartoš</td>
<td>Energy Policy and Security Division</td>
</tr>
</tbody>
</table>
Digital technologies are everywhere....
Since 2008, data collection, storage, and transmission costs have declined by over 90%.

Sources: BNEF (2017), Utilities, Smart Thermostats and the Connected Home Opportunity; Holdowsky et al. (2015), Inside the Internet of Things; IEA (2017), Renewables, Tracking Clean Energy Progress; World Energy Investment; Navigant Research (2017), Market data: Demand Response: Global Capacity, Sites, Spending and Revenue Forecasts.
Internet data traffic is growing exponentially, tripling over the past five years.
Sustained efficiency gains could keep ICT electricity demand largely in check over the next five years, despite exponential growth in demand for data centre and network services.
Poll Q1

Which sector do you think will be most impacted / transformed by digitalization over the next 5-10 years?

a) Buildings
b) Transport
c) Industry
d) Oil & gas
e) Coal
f) Power
Buildings: reducing global energy demand

Widespread deployment of smart building controls could reduce energy use by 10% to 2040

Cumulative energy savings in buildings from digitalization

- By sector:
 - Non-residential
 - Residential
 - Others
 - Appliances
 - Lighting
 - Water heating
 - Space cooling
 - Space heating

- By end use:
 - PWh

© OECD/IEA 2018
Buildings: enabling demand-side response

The growth in network-enabled devices presents opportunities for smart demand response but also increases needs for standby power control.
New business models for enhanced energy services could help overcome technical and economic barriers to digitalization in buildings.
Digitalization and transport

Digital solutions for trucks and logistics could reduce energy use for road freight by 20-25%.

Energy demand

GHG emissions

Net change

-80%

-60%

-40%

-20%

0%

Impacts on road transport energy demand

- Automation, connectivity, sharing, and electrification (ACES) to dramatically reshape mobility
- Impacts on energy demand difficult to predict

I) Optimistic scenario: "Have our cake and eat it too"
- Energy intensity
- Travel demand
- Energy demand

II) Pessimistic scenario: "Dystopian nightmare"
- Heavy-duty vehicles
- Light-duty vehicles

Total road transport energy

Road transport energy demand could halve or double from automation and connectivity depending on how technology, behavior, and policy evolve.
Energy savings from improvement to industrial process controls

Energy efficiency measures relating to improved process control in small to medium US manufacturers

- **Energy savings (left axis)**
- **Cumulative investment cost (right axis)**

Source: IAC database

Improvements to industrial process controls produce substantial energy and associated cost savings
The use of 3D printed components in commercial aircraft could lead to significant material demand and fuel savings.

Illustrative case study: aircraft component light-weighting

- Metal demand in 2050
 - Conventional components
 - Aluminium alloys
 - Nickel alloys
 - AM components
 - Titanium alloys

- Cumulative aircraft fuel savings to 2050
 - Slow adoption
 - Mid-range adoption
 - Rapid adoption

Source: Huang et al. (2016)
Virtual feasibility and durability testing of real process plants can accelerate the innovation cycle by saving time and resources
The oil and gas sector has a complicated relationship with digital technologies but multiple opportunities are available.
Digitalization could increase recoverable resources, decrease production costs, improve health and safety, and reduce the environmental impact of production.
Coal: Multiple opportunities to improve efficiency throughout the supply chain
Increasing performance step by step

Drones, data processing and remote operation may optimize the use of big and expensive machinery
Safety will be the main benefit of digitalization

Mechanization of underground mine and use of super-giant machinery in surface mines removed most of the mining jobs. Driverless trucks and shovels and remote longwalls will reduce further
Digital data and analytics in existing systems can deliver benefits to the owners of power sector assets, the wider electricity system, consumers and the environment.
Digitalization could save around USD 80 billion per year, or about 5% of total annual power generation costs.
If every car today was an EV, how much would...

• Electricity demand increase?
 A. 110%
 B. 55%
 C. 12%

• Generation capacity increase, if everyone charged when it was best for them?
 A. 12%
 B. 40%
 C. 20%
Pre-digital energy systems are defined by unidirectional flows and distinct roles
The digital transformation of the energy system

Pre-digital energy systems are defined by unidirectional flows and distinct roles, digital technologies enable a multi-directional and highly integrated energy system.
Providing system flexibility from the demand side

Uncontrolled demand process, no system optimisation

Uncontrolled demand profile
Providing system flexibility from the demand side

Optimised demand profile
Providing system flexibility from the demand side

- Optimised demand process
- System peak reduction
 Use coincident with PV output
- Reduced net load ramping

© OECD/IEA 2018
Demand response programs – in buildings, industry and transport - could provide 185 GW of flexibility, and avoid USD 270 billion of investment in new electricity infrastructure.

1 billion households and 11 billion smart appliances could actively participate in interconnected electricity systems.
EVs smart charging would provide further flexibility to the grid saving between USD 100-280 billion investment in new electricity infrastructure.
Digitalization can help integrate variable renewables by enabling grids to better match energy demand to times when the sun is shining and the wind is blowing.
Digitalization can facilitate the deployment of residential solar PV and storage, making it easier to store and sell surplus electricity to the grid or locally.

Blockchain could help to facilitate peer-to-peer electricity trade within local energy communities.
Poll Q2

What will be the biggest barrier to achieving the benefits of digitalization?

a) Data ownership / data privacy
b) Cybersecurity
c) Economic disruption and transformation (e.g. job losses)
d) Market design challenges (e.g. ensuring accurate price signals)
e) Lack of public acceptance / trust with new technologies
Building digital resilience

• To date, cyber disruptions to energy have been small

• But cyber-attacks are becoming easier and cheaper – malware, ransomware, phishing / whaling, botnets

• Digitalization also increases the “cyber attack surface” of energy systems

• Full prevention is impossible, but impact can be limited:
 - Raised awareness, cyber hygiene, standard setting and staff training
 - Coordinated and proactive preparation by companies and governments
 - Design digital resilience in technologies and systems

• International efforts can help raise awareness and share best practices
Cybersecurity:

The ability to protect or defend the use of cyberspace from cyber-attacks and cyber incidents, preserving the availability and integrity of networks and infrastructure and the confidentiality of the information these contain.

Commonly also refers to the safeguards and actions available to do this.

Ukraine, December 2016 (reported May 2017)

- A second brief but significant attack on the Ukrainian electricity system.

- Thought to have been a test run for malware “Industroyer” (also known as “Crash Override”): a versatile malware enabling attackers to view, block, control or destroy grid control equipment, including circuit breakers.

- Malware design suggested expert knowledge of several standardised industrial communication protocols widely used to control infrastructure – not only electricity grids – throughout Europe, Asia and the Middle East.

- This was an example of a cyber intrusion into the control systems of critical infrastructure.
Limiting impact (resilience) is particularly important for critical infrastructure: the physical and institutional assets that are essential for an economy to function, such as large-scale energy systems.

- Mexico: identified 3 000 “strategic installations”, half of them owned by the national oil company PEMEX and another 13% by the Federal Electricity Commission.

- Germany: any infrastructure on which more than 500 000 people (1/160th of population) depend is considered critical. This includes all gas power plants and electricity transmission grids.

Key message: The handling of some attacks falls within the capability of companies themselves, while larger-scale attacks by sophisticated actors may require more active government responses.
Managing privacy concerns

No-regrets policy recommendations

1. Build digital expertise within their staff.
2. Ensure appropriate access to timely, robust, and verifiable data.
3. Build flexibility into policies to accommodate new technologies and developments.
4. Experiment, including through “learning by doing” pilot projects.
5. Participate in broader inter-agency discussions on digitalization.
6. Focus on the broader, overall system benefits.
7. Monitor the energy impacts of digitalization on overall energy demand.
8. Incorporate digital resilience by design into research, development and product manufacturing.
9. Provide a level playing field to allow a variety of companies to compete and serve consumers better.
10. Learn from others, including both positive case studies as well as more cautionary tales.
Digitalization: A New Era in Energy

- The energy system is on the cusp of a new digital era

- This first-of-its-kind “Digitalization and Energy” report will help shine a light on digitalization's enormous potential and most pressing challenges

- But impacts are difficult to predict; uncertainty in technology, policy and behaviour

- Much more work needs to be done...

- Next steps for IEA, especially to focus on high impact, high uncertainty areas:
 - Automation, connectivity, and electrification of transport
 - Digitalization, electricity, and smart energy systems