

Climate Scenarios Use in Long-Term Prospective

21 October 2021

Laurent Dubus, Lead Scientist Weather & Climate

8th Annual EPRI-IEA Workshop - Challenges in Energy Decarbonisation: Building a Resilient Net-Zero Future "Planning and Forecasting for Physical and Climate Resilience" Panel

What ?

- RTE has done a comprehensive study « 2050 Energy Futures », on the evolution of the power system, to reach carbon neutrality by 2050
- It assesses different scenarios for the French power system, and provides an analysis according to 4 different axes:

It includes climate change effects by considering 3 different climate databases : 1 for the past and 2 for the future (2 greenhouse gases emissions scenarios)

Météo-France « constant climate » simulations

- 3 simulations sets with « constant climate » (fixed CO2 emissions)
 - □ 200 years « climate 2000 »
 - □ 200 years « climate 2050 » RCP4.5
 - □ 200 years « climate 2050 » RCP8.5

Source Météo-France

From climate parameters to power system modeling

Different climate parameters	Power system parameters
femperature	Electricity demand
	Wind power generation
	Solar PV power generation
→ Wind speed	Hydro power generation
-🔆 Solar irradiation	Availability of nuclear and thermal power generation
Precipitations & river flows	Consumption & generation of border countires
For all EU countries	Interconnection capacities

Rie

These energy variables then feed the ANTARES model

Heat and cold waves will significantly change with climate change

Take away messages

- The approach has assumptions and limits...
- > ... However RTE's study is the first of its size that takes climate change into account
 - Current & future climate / 2 different emissions scenarios
 - Spatial and temporal relationships between variables are taken into account (demand and RE generation in particular)
 - 200 climate years \rightarrow representation of extreme events
- Stress tests are part of the study, in particular for heat and cold waves & hydrological and wind droughts
- These climate databases are also used in other projects, including network assets resilience studies.
- Increased collaboration between energy modelers and climatologists is essential for the assessment of climate change impacts on infrastructure systems, their adaptation to, and their contribution to mitigation of climate change