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Foreword

In recent years, artificial intelligence (Al) has soared to the top of the political and business
agenda. Once a mostly academic pursuit, it has evolved into an industry with trillions of
dollars at stake. Despite significant uncertainties, it is now very clear: Al is coming. In many
sectors, it is already here.

This has major consequences for the global energy sector. There is no Al without energy —
specifically electricity. At the same time, Al has the potential to transform the sector’s future.
However, policy makers and the market have often lacked the tools to fully understand these
wide-ranging impacts. Recognising this gap, the International Energy Agency (IEA) stepped
up to address it by leveraging our expertise in data collection and analysis, as well as our
convening power, to inform and strengthen the global dialogue on these issues.

We began a new workstream on the nexus of energy and Al over a year ago, which has
resulted in a series of key activities and outputs, culminating in this special report. In
December 2024, we held the Global Conference on Energy and Al, the largest international
gathering on the matter to date, at our headquarters in Paris. It brought together policy
makers, the tech sector, the energy industry and international experts to discuss the critical
issues at play. This helped lay groundwork for the Al Action Summit, co-chaired by President
Emmanuel Macron of France and Prime Minister Narendra Modi of India, in February 2025
—an event to which the IEA made crucial contributions.

This special report advances the conversation further. It is the first comprehensive global
analysis examining all aspects of the links between energy and Al —from pathways to securely
and sustainably meeting energy demand for Al, to how Al itself could transform the
production, consumption and transport of energy around the world. The analysis explores
the implications of the rise of Al on energy security, investment, emissions and more —
providing a strong factual basis for those thinking through the challenges and opportunities
ahead.

This report shows that electricity demand for Al is growing fast globally, even if other sources
of demand are growing faster. In some parts of the world, the effects of Al on electricity
systems are set to be very significant. With this in mind, we suggest three pillars countries
should bear in mind as they plan for the future.

The first is the importance of finding the right mix of energy sources to deliver the
uninterrupted power supply that data centres need to support Al. According to our analysis,
there is a role for established technologies such as renewables and natural gas, as well as
emerging technologies like small modular nuclear reactors (SMRs) and advanced
geothermal. Deciding which options to prioritise may depend on other policy priorities.

Yet a sole focus on increasing electricity generation won’t be enough. To deliver the energy
for Al, countries must also think about their infrastructure. That will mean accelerating
investment in grids — and working to ensure that data centres, as well as the wider electricity
system, are as efficient and flexible as possible.
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Making this a reality will hinge on the final pillar: bolstering dialogue between policy makers,
the tech sector and energy industry. This is an area in which the IEA is proud to have taken a
leadership role —and will continue to do so.

Al could also be an incredibly powerful tool for the energy sector. It is already helping energy
companies optimise their approaches to exploration, production, maintenance and safety —
and if Al tools are applied broadly, huge amounts of electricity transmission capacity could
be unleashed without building a single new line. Yet our analysis shows the sector must do
more to seize the moment. This, too, will require strong collaboration between the public
and private sector on key issues such as building digital skills in the energy workforce.

The unknowns that remain — from macroeconomic uncertainties to what the most popular
Al applications will be — cannot stand in the way of action. As the digitalisation of the global
economy advances, the energy sector and the tech industry will become increasingly
intertwined. Our hope is that this report will help those preparing for this new era.

I would like to commend the talented IEA team behind this analysis — with special thanks to
lead authors Thomas Spencer and Siddharth Singh, overseen by our Director of Sustainability,
Technology and Outlooks Laura Cozzi. Their work demonstrates the IEA’s aptitude for
tackling key emerging topics with authority and providing stakeholders around the world
with the energy information they need the most.

Dr Fatih Birol
Executive Director
International Energy Agency
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Executive Summary

The transformative potential of Al depends on energy

There has been a step change in the capabilities of artificial intelligence (Al), driven by
falling computation costs, a surge in data availability and technical breakthroughs. Al is the
science of making machines capable of learning to perform tasks that traditionally required
human intelligence. Al is emerging as a general-purpose technology, much like electricity.
Today, it can generate text and videos, accelerate scientific discovery in fields like medicine
or materials science, make manufacturing robots smarter and more productive, drive
commercial taxis in complex city landscapes, and detect threats to critical infrastructure.

In the past few years, Al has gone from an academic pursuit to an industry with trillions of
dollars of market capitalisation and venture capital at stake. The market capitalisation of
Al-related firms in the S&P 500 has grown by around USD 12 trillion since 2022. While there
are several uncertainties about its uptake and impact, Al’s rapid development and huge
potential have made it central to corporate strategies, economic policies and geopolitics.

However, there is no Al without energy; at the same time, Al has the potential to transform
the energy sector. Affordable, reliable and sustainable electricity supply will be a crucial
determinant of Al development, and countries that can deliver the energy needed at speed
and scale will be best placed to benefit. Training and deploying Al models takes place in large
and power-hungry data centres. A typical Al-focused data centre consumes as much
electricity as 100 000 households, but the largest ones under construction today will
consume 20 times as much.

Policy makers and markets have lacked the tools to assess implications

The energy sector is therefore at the heart of one of the most important technological
revolutions today. However, there is still a lack of understanding of the stakes and
implications of this deepening connection between energy and Al. Consistent with its strong
track record of identifying and exploring emerging issues in the energy sector, this new
International Energy Agency (IEA) special report seeks to fill this gap with the most
comprehensive, data-driven analysis on the topic to date. Based on a new global model and
comprehensive dataset of data centre electricity demand, its analysis was also enriched by
an in-depth process of consultation with policy makers, the tech sector, the energy industry
and other experts.

Data centres account for a small share of global electricity consumption
today, but their local impacts are far more pronounced

Global investment in data centres has nearly doubled since 2022 and amounted to half a
trillion dollars in 2024. This investment boom has led to growing concerns about
skyrocketing electricity demand.

Executive Summary 13



Data centres accounted for around 1.5% of the world’s electricity consumption in 2024, or
415 terawatt-hours (TWh). The United States accounted for the largest share of global data
centre electricity consumption in 2024 (45%), followed by China (25%) and Europe (15%).
Globally, data centre electricity consumption has grown by around 12% per year since 2017,
more than four times faster than the rate of total electricity consumption. Al-focused data
centres can draw as much electricity as power-intensive factories such as aluminium
smelters, but they are much more geographically concentrated. Nearly half of data centre
capacity in the United States is in five regional clusters. The sector accounts for substantial
shares of electricity consumption in local markets.

Electricity demand for data centres more than doubles by 2030

Data centre electricity consumption is set to more than double to around 945 TWh by 2030.
This is slightly more than Japan’s total electricity consumption today. Al is the most important
driver of this growth, alongside growing demand for other digital services. The United States
accounts for by far the largest share of this projected increase, followed by China. In the
United States, data centres account for nearly half of electricity demand growth between
now and 2030. By the end of the decade, the country is set to consume more electricity for
data centres than for the production of aluminium, steel, cement, chemicals and all other
energy-intensive goods combined. Uncertainties widen further after 2030, but our Base Case
sees global data centre electricity consumption rising to around 1 200 TWh by 2035.

A diverse range of sources will be needed to meet demand

Renewables and natural gas take the lead in meeting data centre electricity demand, but
a range of sources are poised to contribute. Half of the global growth in data centre demand
is met by renewables, supported by storage and the broader electricity grid. Renewables
generation is projected to grow by over 450 TWh to meet data centre demand to 2035,
building on short lead times, economic competitiveness and the procurement strategies of
tech companies. Dispatchable sources, led by natural gas, also have a crucial role to play,
with the tech sector helping to bring forward new nuclear and geothermal technologies as
well. Natural gas expands by 175 TWh to meet growing data centre demand, notably in the
United States. Nuclear contributes about the same amount of additional generation to meet
data centre demand, notably in China, Japan and the United States. The first small modular
reactors come online around 2030.

Data centres are one of several drivers of accelerated electricity demand
growth in the Age of Electricity

Data centres account for around one-tenth of global electricity demand growth to 2030,
less than the share from industrial motors, air conditioning in homes and offices, or electric
vehicles. However, the significance of data centres in driving electricity demand differs by
country. Emerging and developing economies are already experiencing rapid electricity
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demand growth. In these countries, data centres account for around 5% of the increase in
electricity demand to 2030. Advanced economies, on the other hand, have seen several
decades of essentially stagnant electricity demand. In this group of countries, data centres
account for more than 20% of demand growth to 2030, presenting a wake-up call on the
need to put the electricity sector on a growth footing again.

Smarter is faster when it comes to integrating data centres in electricity grids

Electricity grids are already under strain in many places: we estimate that unless these risks
are addressed, around 20% of planned data centre projects could be at risk of delays. Grid
connection queues for both supply and consumption projects, including data centres, are
long and complex. Building new transmission lines can take four to eight years in advanced
economies and wait times for critical grid components such as transformers and cables have
doubled in the past three years. Generation equipment is also in high demand. Turbine
deliveries for new gas-fired power plants now face lead times of several years, potentially
delaying their commissioning beyond 2030. If the electricity sector does not step up, there is
a risk that meeting data centre load growth could entail trade-offs with other goals such as
electrification, manufacturing growth or affordability.

Key options to mitigate these risks include locating new data centres in areas of high power
and grid availability, and operating either data centre servers or their onsite power
generation and storage assets more flexibly. These strategies are still underexplored. An Al-
focused data centre is 10 times more capital-intensive than an aluminium smelter, which
means curtailing its operations to provide flexibility to the grid is very costly. But many data
centres operate with a buffer of spare server capacity. Regulators could explore measures to
incentivise data centre operators to use spare server capacity or their backup power
generation or storage assets more flexibly. Grid operators could also examine incentives to
locate data centres in areas where grids are less constrained. We find that 50% of data
centres under development in the United States are in pre-existing large clusters, potentially
raising risks of local bottlenecks.

There are large uncertainties in the outlook for Al-related electricity demand

There are uncertainties in how quickly Al will be adopted, how capable and productive it
will become, how fast efficiency improvements will occur, and whether bottlenecks in the
energy sector can be resolved. These uncertainties are explored in sensitivity cases. A Lift-
Off Case assumes higher rates of Al uptake and proactive action to reduce energy sector
bottlenecks. A Headwinds Case incorporates bottlenecks — including macroeconomic
headwinds — in the uptake of Al and the buildout of energy infrastructure to power it. Our
High Efficiency Case highlights the potential for even stronger gains in the efficiency of Al-
related hardware and Al models. In this case, electricity demand from data centres is 20%
lower in 2035 than in the Base Case. By 2035, the range of data centre electricity demand
across our cases spans from 700 to 1 700 TWh. The increase in gas-fired power to meet data
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centre demand in our Lift-Off Case is four times higher than in our Headwinds Case. Growth
in nuclear output to meet data centre demand varies even more.

Al could unlock major efficiency and operational gains for the energy sector

Al is already being deployed by energy companies to transform and optimise energy and
mineral supply, electricity generation and transmission, and energy consumption. There
are numerous objectives in play, including reducing costs, enhancing supply, extending asset
lifetimes, reducing downtime and lowering emissions.

The oil and gas industry has been an early adopter of Al, using it to optimise exploration,
production, maintenance and safety. In exploration and development, Al can make the
evaluation of resources more reliable and reduce predrilling uncertainty. In operations, it is
being used to optimise and automate production processes, detect leaks, predict
maintenance needs, and support efforts to reduce methane emissions.

Al can help to balance electricity networks that are growing more complex, decentralised
and digitalised. Al can improve the forecasting and integration of variable renewable energy
generation, reducing curtailment and emissions. Al-based fault detection can help rapidly
identify and precisely pinpoint grid faults, reducing outage durations by 30-50%. Remote
sensors and Al-based management can increase the capacity of transmission lines. Up to 175
gigawatts (GW) of transmission capacity could be unlocked if these tools are applied, without
any new lines being built. This is more than the increase in the data centre power load to
2030 in the Base Case.

The industry of the future will be increasingly digitalised and automated; countries and
companies that take the lead in integrating Al into manufacturing will jump ahead. Al
applications can accelerate product development, lower costs and increase quality.
Widespread adoption of existing Al applications to optimise processes in industry can lead
to energy savings equivalent to more than the total energy consumption of Mexico today.
European companies have over half of the market share for industrial automation solutions,
which are the critical enabler for industrial Al deployment.

Al applications in transport can improve efficiency and save costs, but they could also
increase demand for personal mobility. Al applications are being used to manage traffic,
optimise routes, predict maintenance needs and develop autonomous vehicles. The
widespread adoption of Al applications across the transport sector could lead to energy
savings equivalent to the energy used by 120 million cars. While autonomous vehicles
operate more efficiently than conventional ones, they might also attract people away from
public transport as costs fall and availability increases, leading to rebound effects.

In buildings, there is significant potential for Al-led optimisations to make heating and
cooling systems more efficient and electricity use in buildings more flexible. Barriers to
realising this potential include fragmented ownership of buildings, lack of digitalisation and
inadequate incentives. If scaled up, existing Al-led interventions could lead to global
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electricity savings of around 300 TWh, equivalent to annual electricity generation today for
Australia and New Zealand combined.

Accelerated innovation could be one of the most significant longer-term
impacts of Al on the energy sector

Al is emerging as a powerful tool for scientific discovery, helping researchers to find, test
and commercialise innovations faster. In biomedicine, for example, Al led to a 45 000-fold
acceleration in the mapping of protein structures — critical for designing new drugs.
Innovation lead times for new energy technologies often span decades. Reducing this period
will be key to achieving energy sector goals such as sustainability and competitiveness. Yet
only 2% of the equity raised by energy start-ups has gone to companies with an Al-related
value proposition.

Energy innovation challenges are characterised by the kinds of problems Al is good at
solving. For example, only 0.01% of next-generation solar PV materials have been
experimentally produced, leaving a huge set of possible materials still to be explored. Al
could allow scientists to dramatically accelerate the process of finding and testing promising
materials, battery chemistries and carbon capture molecules. Policy will be required to
support Al-led invention and also accelerate commercialisation, which is often a bigger
impediment to new products than the discovery phase.

The energy sector is not yet making the most of Al

Energy is amongst the most complex and critical sectors in the world today, yet it can and
should do more to seize the potential benefits of harnessing Al. The energy sector faces
barriers to realising the widespread adoption of Al, including missing or inadequate access
to data and digital infrastructure and skills, as well as persistent digital and physical security
concerns, which often trump potential efficiency gains. The prevalence of Al-related skills is
much lower in the energy sector compared with other sectors. Policy and regulatory changes
will be needed to enable the energy sector to seize the benefits of Al.

Al could sharpen some energy security concerns and help address others

The supply chains for the components going into data centres are complex and globalised.
For example, gallium is an increasingly critical metal used in cutting-edge computer chips and
power electronics, offering significant efficiency benefits compared with traditional silicon-
based semiconductor designs. China currently accounts for around 99% of global refined
gallium supply. Our estimates indicate that in 2030, demand for gallium for data centres
could reach over 10% of today's supply.

Al compounds some energy security risks, but it also offers solutions in both the cyber and
physical domains. As Al capabilities increase, so does the capacity for them to be used and
misused by various actors. Cyberattacks on energy utilities have tripled in the past four years
and have become more sophisticated because of Al. At the same time, Al is becoming a
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critical tool to defend against them. In the physical domain, Al-equipped satellites and
sensors can detect incidents in critical energy infrastructure 500 times faster than traditional
ground-based methods and at high spatial resolutions. As the nature of energy security
evolves, the IEA will continue to monitor this critical issue.

Emerging and developing economies can leapfrog to Al solutions

Emerging and developing economies other than China account for 50% of the world’s
internet users but less than 10% of global data centre capacity. Countries with a record of
reliable and affordable power will be best placed to unlock data centre growth, localise the
computing power that is critical to homegrown Al development, and spur the IT industry
more generally. Data centres can also be anchors for new low-emissions power projects.
However, in regions with frequent power outages or power quality issues, maintaining a data
centre can be risky or costly, making overseas hosting more appealing for businesses. There
have also been promising use cases of Al in developing economies that have helped unlock
new efficiencies and optimise processes. Overcoming barriers to digitisation can help such
economies leapfrog to Al solutions that offer cost and time savings.

Concerns that Al could accelerate climate change appear overstated, as do
expectations that Al alone will address the issue

Emissions from electricity use by data centres grows from 180 million tonnes (Mt) today to
300 Mt in the Base Case by 2035, and up to 500 Mt in the Lift-Off Case. While these
emissions remain below 1.5% of the total energy sector emissions in this period, data centres
are among the fastest growing sources of emissions.

The widespread adoption of existing Al applications could lead to emissions reductions
that are far larger than emissions from data centres — but also far smaller than what is
needed to address climate change. We estimate that emissions reductions from the broad
application of existing Al-led solutions to be equivalent to around 5% of energy-related
emissions in 2035. Various barriers to Al adoption will need to be overcome to unlock these
gains. Rebound effects — for example from modal shifts away from public transport to
autonomous cars — could undercut some of these benefits. Al can be a tool in reducing
emissions, but it is not a silver bullet and does not remove the need for proactive policy.

With energy and tech now on a journey together, collaboration is key

The tech sector and energy industry are more intertwined than ever before. There are large
uncertainties on the path ahead, but these should not get in the way of concerted action.
Delivering the energy for Al, and seizing the benefits of Al for energy, will require even deeper
dialogue and collaboration between the tech sector and the energy industry. Along the way,
there will be risks to manage. The IEA will continue to provide data and robust analysis to
inform decision making and help the energy and technology sectors be better prepared as
the adoption of Al unfolds.
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Chapter 1

The rise of Al and its nexus with energy
A new paradigm emerges

SUMMARY

e Artificial intelligence (Al) is emerging as one of the most consequential technologies
of the 21st century. Recent breakthroughs have injected enormous momentum. The
amount of computation used to train a state-of-the-art Al model has increased by
around 350 000 times since 2014. Al can already generate text, videos and audio;
predict complex systems like the weather; make robots smarter and more flexible;
automate online workflows; and sense and interpret the physical world.

® As models have become much more capable, Al has become an industry with billions
of dollars of annual investment and trillions of dollars of financial market value at
stake. Of the USD 16 trillion increase in market capitalisation of S&P 500 companies
since 2022, USD 12 trillion has come from Al-related companies.

® Among large companies, Al adoption rates rose from slightly over 15% of firms using
Al in 2020 to nearly 40% in 2024. However, smaller firms use Al much less, with
missing expertise appearing to be a key constraint. Among households, Al use is highly
globalised: over 40% of online populations in countries as diverse as Brazil, India,
Indonesia and the United States report regularly using generative Al.

® Al is a product of extremely complex supply chains. The machine tools used to make
high-end chips are among the most complex machines in existence today, and their
production is dominated by Europe. Chip production is concentrated in East Asia, with
the largest company holding a 65% share. The United States dominates Al model
development and deployment, although China has also made strides recently.

® The rise of Al has huge implications for energy. Al model training and use takes place
in large data centres, with global investment in these facilities doubling since 2022. A
large data centre can consume as much electricity as 100 000 households. The largest
currently under construction could consume as much as 2 million households.

e Hardware and software efficiencies of Al models are improving rapidly. In test
conditions, we estimate that querying an Al model currently takes around 2 watt-
hours for language generation, at least twice that for large reasoning models like
DeepSeek-R1, and around 25 times as much to generate a short video. Real-world
implementation may be more efficient, but lack of data on the energy consumption
of commercial models inhibits assessment.

® This report explores how much energy Al will need, what the uncertainties are in the
outlook, and what sources will help meet this demand. It addresses how Al can be
applied in the energy sector and how it can contribute to making the energy system
more secure, affordable and sustainable. It also explores the broader ramifications for
energy security, innovation and investment, and the energy policy landscape.
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1.1 Introduction

Artificial intelligence (Al) is emerging as one of the most consequential technologies of the
21st century. It has the potential to transform society and the economy. It also has significant
implications for the energy sector. The world — including the energy sector — may be on the
cusp of changes as significant as those brought about by electricity or the Internet.

Seizing the potential benefits of Al will depend on a better understanding of both the risks
and opportunities — and this holds for the energy sector too. On the one hand, rapidly
growing investment in data centres is already straining grids in some places and raising
concerns about the ability of the electricity system to meet a surge in demand. On the other
hand, there are many potentially beneficial use cases for Al in the energy sector, from
accelerating technological innovation and optimising the operation of electricity systems to
making resource exploration more efficient and improving weather forecasting and the
resilience of energy systems to disruptions.

The International Energy Agency (IEA) has been working on the nexus between energy and
digitalisation and data centres for several years. The IEA first published a special report on
digitalisation and energy in 2017 (IEA, 2017), and has been expanding its analytical and
modelling capacities, data collection and policy recommendations in this field since then.
Recognising the need for global dialogue on energy and Al, the IEA organised the Global
Conference on Energy and Al in December 2024, the largest-ever gathering of the technology
and energy industries, governments and civil society to discuss the energy sector implications
of the rise of Al. This conference in turn contributed to the Al Action Summit held in Paris in
February 2025.

This special report on energy and Al analyses further the major themes that emerged from
the conference. It aims to answer two related questions. First, how much energy will Al need
and what sources will help meet this demand? And second, how can applying Al in the energy
sector contribute to making the energy system more secure, affordable and sustainable?

The report is divided into five chapters:

B This introductory chapter looks at the broader context of the rise of Al and makes the
link between energy and Al.

B Chapter 2 analyses the trends in energy demand from data centres and how to meet it.

B Chapter 3 looks at the application of Al to optimise the energy sector.

B Chapter 4 addresses the role of Al in advancing technology innovation in the energy
sector.

B Chapter 5, the final chapter, discusses the implications of these trends for governments,
industry and people.
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1.2 Therise of Al

Al has a long history, dating back to at least the 1950s. Over time, it has seen a series of
alternating periods of optimism and pessimism (so-called “Al winters”). In recent years,
however, Al has been dramatically boosted by several developments and breakthroughs in
techniques, costs and technology that have led to the rise of Al in its modern form that we
are familiar with today, in particular generative Al. These developments include (Figure 1.1):

B The massive increase in computing power and decline in cost due to exponential
improvements in computing hardware performance. Comparing today with 2006, the
cost of a graphics processing unit (GPU — a specialised computer chip widely used for Al)
per unit of computation has decreased by more than 99%.

B The exponential increase in the availability and quality of data used to train Al models
due to the rise of the Internet and connectivity. The amount of data used to train state-
of-the-art Al models has increased by nearly 30 000 times since 2008.

m  Breakthroughs in the architectures and algorithms behind Al models, notably the rise of
deep neural networks (section 1.3), enabling the development of exponentially larger
and more capable models. The amount of computational power used to train state-of-
the-art Al models has increased by around 350 000 times since 2014.

These advancements have led to Al models that are becoming ever more powerful, capable
and flexible. In the last few years, Al has gone from a field of academic research to an industry
driving hundreds of billions of dollars of investment annually and with trillions of dollars of
financial market value at stake.

Figure 1.1 = GPU computation cost, 2006-2024, and notable Al model
computational training size, 2014-2024
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In the past decade, cheaper computing, exponentially more data and research
breakthroughs in model design have turbocharged Al model capabilities

Sources: IEA analysis based on data from EpochAl (2024), and Coyle and Hampton (2024).
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1.2.1 Surging expectations in financial markets

Capitalising on the perceived potential of Al, technology companies have come to dominate
the stock market — notably in the United States, which hosts some of the world’s largest
technology companies. From November 2022 — when ChatGPT launched — to the end of
2024, 65% of the growth in market capitalisation of the S&P 500 came from companies that
either deploy Al or integrate Al into their core operations. That is, of the USD 16 trillion rise
in market capitalisation of S&P 500 companies, USD 12 trillion came from Al-related
companies alone. This period was marked by a surge in Al-related investor expectations,
before the recent volatility in financial markets. Al-focused start-ups in the United States
have also grown in value faster than non-Al start-ups (Figure 1.2). In 2024, by the time start-
ups reached their fourth round of funding, Al-focused start-ups had an average valuation five
times higher than that of other start-ups.

Figure 1.2 > Market capitalisation of S&P 500 companies, November 2022
and November 2024, and median valuations of United States-
based start-ups, 2024
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Both listed and unlisted Al-focused companies have outpaced
non-Al companies in the stock markets and in raising valuations

Notes: MER = market exchange rate. Al-focused S&P 500 companies include technology companies that have
key Al offerings or have integrated Al into their operations in a significant way. Valuations of start-ups are pre-
money, and rise with the stage of investment, from seed (initial funding, often to get the company operations
started) to series A (first major round of funding that establishes a business model and helps the company
scale), series B (second major funding round that helps companies scale further) and series C (usually for well-
established companies looking to accelerate expansion).

Sources: IEA analysis based on data from Bloomberg Terminal (n.d.) and Crunchbase (n.d.).

These large public and private valuations have led to a surge in investment in Al-related
infrastructure. Technology majors Alphabet, Amazon, Meta Platforms, and Microsoft were
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reported to be planning as much as USD 300 billion in Al-related capital expenditure in 2025.
This is over 20% higher than the total power sector investment in the United States. Box 1.1
explores the interplay between Al-driven investment in data centres and its implications for
the energy sector.

Box 1.1 = Rising ICT investment: a longer-term perspective

Investment in capital- and energy-intensive data centres depends, among other factors,
on expectations for future Al demand and future earnings from Al monetisation. For this
reason, the energy sector has an important stake in the debate on the economic outlook
for Al. Surging investment, high equity prices and lofty valuations for unlisted start-ups
have raised concerns about whether Al could be a “bubble”.

In recent years, information and communication technology (ICT) investment as a share
of gross domestic product (GDP) in the United States has been at the highest it has been
in three decades. The previous peak was in 2000, during the “dotcom bubble”
(Figure 1.3). The recent uptick seen since 2015 has been led by a rise in investment in
corporate software and in data centres and networks.

Figure 1.3 > Investmentin ICT-related assets and infrastructure as a share
of GDP, United States, 1995-2023
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ICT investment has grown to around 5.5% of US GDP in recent years,
higher than at any other time since the 2000 dotcom bubble

Source: IEA analysis based on data from US Bureau of Economic Analysis (2024).

Historically, several major technological innovations have been accompanied by large
waves of capital investment. In some cases, exuberant investment temporarily ran ahead
of demand, but the resulting infrastructure ultimately proved highly productive. The
diffusion of transformative technologies can take time, requiring adaptation of enabling
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infrastructure, adjustment of business models or an upgrading of skills. For example,
from Nikola Tesla’s invention of the alternating current electric motor in 1887, it took
nearly 40 years for electricity to overtake steam power as the largest source of
mechanical power in US factories (Divine, 1983). This was despite factory electrification
doubling the rate of annual productivity improvement in US manufacturing.

For the energy sector, lead times for assets and infrastructure are much longer than for
data centres (see Chapter 2). To enable robust decision making and avoid stranded asset
risk, the energy sector needs a clearer understanding of the outlook for Al-related
electricity demand, while acknowledging unavoidable uncertainties. This includes the
economics, uptake and service demand outlook for Al.

1.2.2 How do households and businesses use Al?

The application of Al is becoming pervasive in modern life and the economy. This has been
enabled by growing access to high-speed Internet. Globally, there are over 90 mobile
broadband subscriptions per 100 people, up from 75 subscriptions per 100 people five years
ago. Half of the world’s population now lives in areas covered by a 5G mobile network. As a
result, Internet traffic has been growing strongly. Total Internet traffic — both fixed and
mobile broadband — has increased more than three times since 2019 (Figure 1.4). This
growing digitalisation of the world economy provides the foundation for Al.

Figure 1.4 = Global digital connectivity indicators and internet traffic,
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The growing digitalisation of the world economy provides the foundation for Al;
since 2019, total Internet traffic has increased more than three times

Source: IEA analysis based on data from ITU (n.d.).
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Since 2022 and the launch of ChatGPT, the breakthrough commercial product for generative
Al, the use of generative Al, such as text- or image-based tools, has surged. Within two years
of ChatGPT’s launch, around 40% of households in the United States and the United Kingdom
were using such tools. ChatGPT had 400 million weekly active users globally in February
2025. Building on infrastructure availability, ownership of computing devices and familiarity
with software, it was able to reach its first 1 million users within five days of launch,
compared with 2-10 months for popular social media applications. Al tools are now being
widely integrated into mainstream software applications, including email, chat and social
media.

Al uptake is already quite globalised. As a share of the online population, over 50% of survey
respondents report using generative Al at least weekly in countries like Brazil, India,
Indonesia, Kenya and Pakistan. Among people who are already online, the adoption rate of
generative Al is higher among lower-income countries. However, a significant share of the
population in lower-income countries does not have regular access to the Internet (less than
one in three in Kenya and Pakistan, for example), so overall adoption at the population level
remains lower. The role of Al in emerging market and developing economies is explored
further in Chapter 5.

Figure 1.5 > Growth in the use of digital technologies in the workplace since
the year of first commercial release, United States
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There has been a rapid uptake of generative Al applications in the workplace, enabled by
the widespread adoption of personal computers and the Internet in US workplaces

Note: For personal computers, year zero is 1981, the year the first IBM Personal Computer was released; for
the Internet, year zero is 1995, the year the Internet first carried commercial traffic; for generative Al, year
zero is 2022.

Sources: IEA analysis based on data from Bick et al. (2024).
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Firms are increasingly deploying Al for a variety of use cases, from data analysis and
forecasting to process automation, text generation and analysis, and cybersecurity. Official
surveys of Al use in firms highlight several interesting trends. First, Al adoption is increasing
rapidly. There has been a rapid uptake of Al applications in the workplace, enabled by the
widespread adoption of personal computers and the Internet (Figure 1.5). Among large firms
in Organisation for Economic Co-operation and Development (OECD) countries, Al adoption
rates increased from slightly over 15% in 2020 to nearly 40% in 2024 (Figure 1.6). Second,
there is a significant gap in adoption rates between small and large firms, and this gap
appears to be widening. In 2020, adoption rates were around 12 percentage points higher in
large firms than in small firms; by 2024, this had widened to nearly 30 percentage points.
Third, Al adoption rates are higher in firms based in higher-income countries. For firms based
in countries with a GDP per capita above USD 60 000 at purchasing power parity, adoption
rates are nearly 10 percentage points higher in small firms and nearly 20 percentage points
higher in large firms compared to the OECD average.

Figure 1.6 = Al adoption rates by firm size in OECD countries and Al adoption
rates by firm size compared to GDP per capita of the firm’s home
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Al adoption rates are increasing, but larger firms and firms in higher-income countries
tend to use Al more than smaller firms and firms in lower-income countries

Note: PPP = purchasing power parity.
Sources: IEA analysis based on data from OECD (2024) and World Bank (2024).
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Official surveys unfortunately provide limited information on what Al is being used for in
firms and what barriers inhibit further adoption. One exception is a digital trends survey in
the European Union (Figure 1.7). The survey shows that Al use by application type is quite
broad, with language and data analysis being the most popular applications, followed by
process automation. In terms of business function, ICT security reports the highest rate of Al
adoption, followed by applications in core production processes. Al use for robotics, research
and development (R&D), and logistics is non-negligible but lags behind other categories
(likely partly due to the structure of the sample of firms, which covers all sectors including
the dominant service sector). Chapter 3 of this report covers Al applications in the energy
sector, while Chapter 4 focuses on Al for energy innovation.

Figure 1.7 = Percentage of large firms reporting using Al by application type
and business function, European Union, 2024
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Source: IEA analysis based on data from Eurostat (2025).

The data also give a window into factors hindering the wider use of Al. The top constraint by
some margin was missing expertise (the data presented here are for firms employing more
than 250 people). Chapter 5 discusses the risk that skills gaps may hold back the broader
adoption of Al in the energy sector. Privacy and legal concerns also rated highly as
impediments (Figure 1.8). Chapter 3’s discussion of Al uptake in the energy sector highlights
the potential need for adjustments in regulatory and policy regimes to facilitate the broader
use of Al tools. The high cost of Al tools or their absence of utility to the firm did not rate
highly as barriers to adoption.
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Figure 1.8 = Percentage of large firms reporting not using Al by reason,

25%

20%

15%

10%

5%

European Union, 2024

Missing  Privacy Legal Missing Integration  High Ethical Al not
expertise concerns concerns data  challenges costs concerns  useful

Missing expertise is the dominant reason that firms do not adopt Al today,
followed by privacy and legal concerns

Source: IEA analysis based on data from Eurostat (2025).

1.3

What is Al?

There is no single and universally accepted definition of Al. The understanding of what it
constitutes has evolved with the development of the technology. In simple terms, Al can be
defined as the science of making machines that are capable of learning to perform tasks that
are traditionally considered to require human intelligence. Today, Al differs from traditional
computational techniques that solely rely on explicitly programmed instructions. Al, by
contrast, focuses on learning from data to find patterns, make predictions and perform
actions. Al systems improve over time through training.

The development of Al over the years can be structured into three archetypes:

28

Rules-based or symbolic Al: This is one of the earliest approaches to Al, which refers to
Al systems that use explicitly programmed rules and logic to process information, make
decisions or solve problems. This approach was rooted in the belief that intelligence
could be captured in formal rules and symbolic logic. While both traditional computing
and symbolic Al rely on explicitly programmed rules, symbolic Al can handle more
complex and less well-defined tasks. This form of Al dominated research in this field for
several decades until the 1990s. Chess engines such as DeepBlue, which defeated chess
world champion Gary Kasparov in 1997, are examples of rules-based Al. However, rules-
based systems proved difficult to scale, brittle in the face of unexpected or open-ended
situations and highly labour intensive to develop.
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B Machine learning and reinforcement learning: Machine learning refers to algorithms
that learn patterns and make decisions from data without being explicitly programmed
to do so. Instead of relying on predefined rules as in rules-based Al, machine learning
systems build statistical models to identify patterns, predict outcomes and improve their
performance over time through experience. Reinforcement learning refers to machine
learning systems that learn to achieve specific objectives through trial and error.

®  Neural networks and deep learning: A neural network is a computational model
inspired by the way the human brain works. Neural networks — a type of model under
the machine learning umbrella — consist of layers of interconnected nodes or “neurons”
that receive and process information. The network receives information from an
external stimulus (e.g. an image of the number nine), processes that information by
passing it through the nodes in each layer of the neural network, and the final layer
provides the calculated output (e.g. recognises that the numeral in the image is the
number nine). Deep learning refers to neural networks that have multiple “hidden”
computational layers between the input and output layers. One of the first practical
applications of neural networks was a numeral recognition network deployed to read
the numbers on bank cheques in the early 1990s.

More powerful neural networks were held back by the high computational requirements of
training and running them, the algorithmic challenges of training multilayered networks to
learn from data and the lack of data for training. In the 2000s, breakthroughs in training
algorithms, improvements in computing performance and the proliferation of data led to the
take-off of neural networks as the dominant paradigm in Al. Today’s neural networks can be
massive, with hundreds of billions of parameters trained on trillions of data points in training
runs that can encompass more than a trillion trillion (10%*) calculations.

Today’s Al-based systems and applications such as Al chatbots are often built on a
combination of techniques, and there is therefore no black-and-white distinction between
the approaches described above.

1.3.1 Types of Al

Al can also be classified in terms of the kinds of tasks it can perform. Although, again, there
are overlaps among these categories, today’s Al systems can be usefully classified under the
following commonly used terms:

Predictive Al: Predictive Al refers to the use of Al models to predict future outcomes. It has
applications in scientific modelling, weather forecasting, predictive maintenance of energy
infrastructure and finance. A recent application of predictive Al that has gained prominence
is AlphaFold, which predicts the three-dimensional structures of proteins based on their two-
dimensional sequence of amino acids. Given that the three-dimensional structures of
proteins determine their behaviour, predicting these structures can accelerate drug
discovery (see Chapter 4). Another example of a predictive Al model is GraphCast, which
combines the rules of classical physics with machine learning to develop faster, cheaper and
more accurate weather forecasts.
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Generative Al: Generative Al refers to applications that focus on generating new content,
such as text, images, audio and video. ChatGPT, referred to previously, is an example of a
generative Al application, although there is a plethora of such applications in use today. Their
popularity has brought into focus the energy needs of data centres used to train and run such
models (see Chapter 2). While generative Al can be further categorised into numerous
different variants, the following categories are worth noting:

B Language models take text inputs and generate text outputs.

B Multimodal models can also process inputs in one or more non-text forms, such as
image, video or audio, and provide outputs in various forms (e.g. video generation).

®  Large reasoning models are variations of language models that use longer and more
structured reasoning steps to provide more accurate answers. They perform particularly
well on complex, multistep but well-structured problems like coding or mathematics.
This practice of deploying longer reasoning chains to answer questions is known as
“inference-time scaling” or “test-time scaling”. OpenAl’s 01 model and DeepSeek’s R1
model are examples of large reasoning models.

Computer vision: Computer vision focuses on enabling machines to interpret and
understand visual data, such as images and videos, in a way that mimics human vision.
Computer vision leverages Al techniques, particularly deep learning and machine learning,
to perform tasks like object detection, facial recognition, image classification and image
interpretation. It is widely used in applications such as self-driving cars, medical imaging,
security and augmented reality.

Physical Al: Physical or embodied Al refers to systems that physically interact with the real
world, such as autonomous cars, robots and drones. Whereas classical industrial robots are
programmed to perform only one task in a highly controlled environment, the machine
learning capacities of modern Al systems are expanding the capability of physical Al systems
to learn from their environment and operate in more open-ended and uncertain situations.
In the energy sector, applications of physical Al include autonomous cars, automated drones
to inspect energy infrastructure for faults and highly automated (self-driving) laboratories to
test new energy technologies such as battery chemistries (see Chapter 4).

Agentic Al: Agentic Al is a broad term encompassing autonomous “agents” designed to
execute specific tasks, particularly in virtual environments. It helps to automate workflows
and business processes. For example, the virtual voice assistants that are commonly seen on
mobile devices are instances of agentic Al. In the energy sector, examples of agentic Al
include systems that use Al to dynamically control energy consumption in buildings or the
charging of electric vehicles.

1.3.2 The Al supply chain

The supply chain that ultimately leads to the application and deployment of Al is highly
complex, geographically concentrated and yet very international. It involves several
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components, including massive data centres that can consume as much electricity as a small
town; critical and rare earth minerals required for the components found in these data
centres; individual chips that can have tens or even hundreds of billions of transistors (or
switches); and complex lithography machines costing hundreds of millions of dollars that
etch microscopic patterns at atomic scales onto silicon chips, which in turn are made out of
high-purity sand.

As companies across sectors globally are beginning to deploy Al in their systems, it is
worthwhile exploring the processes that enable the use of Al in the first place. Large-scale Al
models trained on vast datasets are being developed by companies such as OpenAl, Meta,
Google (Alphabet), MistralAl, NVIDIA and Baidu. While some of these companies are based
in Europe and Asia, Al-focused technology companies based in the United States hold a
dominant position in the market.

The training for these models involves the use of massive datasets, substantial computing
power, specialised hardware and dedicated systems. Al model training and use can take
place on-device, such as on laptops and smartphones or in smart cars (known as “at the
edge”), or remotely in data centres. Larger Al models are too complex to be trained or run
on laptops and mobile phones and are therefore processed in data centres. These data
centres consist of servers (which integrate the computing chips), memory drives, high-
bandwidth networks (moving huge amounts of data between chips and memory or between
servers), cooling systems keeping the servers at optimal temperature and backup power
systems to ensure reliability (see Chapter 2). A large share of these specialised data centres
are based in the United States, with hubs in Northern Virginia, Texas and California, but many
are also located in hubs such as Shanghai in China, or Paris, Dublin, London and Frankfurt in
Europe.

The fundamental physical building blocks of Al infrastructure are computer chips. Traditional
computing in laptops and desktops is dominated by central processing units (CPUs). Al-
related computing has been built around graphics processing units (GPUs) and other
specialised chips, such as tensor processing units (TPUs). GPUs, which currently dominate Al-
related computations, are designed for extremely rapid parallel processing, which results in
much faster and more energy-efficient processing for Al training and deployment. Most GPU
manufacturers offer specialised models with significantly increased performance for Al
training. Dominant players that design these chips include NVIDIA, Broadcom, AMD and Intel.
The market leaders among chip designers are also largely based in the United States. These
chips, once designed, are manufactured either by the integrated device manufacturers that
both design and manufacture them, such as Intel, or foundries that specialise in
manufacturing them, such as TSMC and Samsung Foundry. Most chips used in Al-focused
data centres are manufactured in foundries based in Chinese Taipei and Korea. TSMC
currently holds a dominant position in the market, with a commanding 65% share of foundry
revenue in 2024.
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Figure 1.9 = Select Al infrastructure and types of applications
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Al is supported by a highly complex global supply chain

These Al-focused chips, in turn, are manufactured using highly complex machines. Advanced
extreme ultraviolet lithography machines, such as those produced by ASML, are crucial for
creating the intricate circuit patterns on Al-focused chips. This process involves using light to
etch switches onto silicon wafers. ASML, headquartered in the Netherlands, is the market
leader in manufacturing these machines. The optical systems — which are among the most
critical of the core components of ASML’s lithography machines —are, in turn, manufactured
by the German company Carl Zeiss. These are only a few of the key components that enable
Al. The supply chains of various other parts of the puzzle, such as silicon wafers and data
centre cooling systems, are also highly international. Al is therefore a global enterprise, even
as parts of it are heavily concentrated in certain regions.

1.3.3 Types of Al infrastructure

Conventional data centres house general-purpose servers that support a wide range of
applications, from cloud computing and web hosting to financial transactions. These facilities
typically prioritise reliability, energy efficiency and low latency (i.e. the time delay between
input and output). Because of the premium placed on low latency in traditional data centre
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services, such as video streaming and web hosting, data centres tended to cluster close to
final demand and population centres. This also tended to limit their size.

Table 1.1 > Characteristics of selected types of computing infrastructure
LR IREE] Al training cluster Al inference cluster eeeRtysRnd
supercomputer web content servers

Primary Scientific discovery, Al model training Al model deployment Hosting and delivering

purpose national security and use web media

Example Climate modelling, Large language model Al chatbots and Video streaming

use cases nuclear simulations, training generative Al
oil and gas applications

exploration,
molecular modelling

Computing  CPU-centric, GPU-centric, Heterogeneous (mix CPU-centric, distributed
architecture extremely high extremely high of CPU/GPU/TPU/ caching, load balancing,
parallelism, high- parallelism, high- ASIC), moderate edge computing
performance performance latency
interconnect interconnect

Optimisation Maximise sustained Maximise aggregate Maximise throughput Minimise latency,

objective computing acrossa  computing and data  and efficiency; maximise uptime,
highly parallel system throughput acrossa latency tolerance ensure scalability
massively parallel depends on the
system application but is
generally higher
Datasets Large, often Massive, often High volume of Large-scale structured/
structured datasets  unstructured individual requests  unstructured data (e.g.
(e.g. experimental datasets (e.g. text or (e.g. search queries  user content, media
data, climate models) image corpora) and individual assets, web pages)
recommendations)
Performance FLOPS, sustained Single- and half- Queries per second, Requests per second,
metrics performance precision FLOPS latency, performance uptime, bandwidth
per watt utilisation, response
time
Resource High capital Extremely high Moderate to high Scalable cloud
requirements expenditure, capital expenditure, capital expenditure, infrastructure,
specialised facilities, specialised facilities, depending on scale  distributed data
skilled workforce skilled workforce centres, moderate to

high capital expenditure

Example Frontier (ORNL), NVIDIA DGX Amazon Inferentia Amazon CloudFront
systems Fugaku (RIKEN), SuperPOD, xAl Web Servers
Leonardo (CINECA)  Colossus

Note: ASIC = application-specific integrated circuit; CPU = central processing unit; FLOPS = floating-point
operations per second; GPU = graphics processing unit; TPU = tensor processing unit.

As Al workloads have grown more complex, specialised computing infrastructure has
emerged to handle the unique demands of training and deploying Al models. Al training
clusters are optimised for deep learning to process massive datasets in parallel and maintain
high fault tolerance. Al training is less latency-sensitive than traditional data centre
workloads, leading to the development of data centres outside existing clusters. Once
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models are trained, they are deployed for real-world use. Different kinds of Al use cases have
different latency tolerances. For example, in autonomous vehicles, the latency tolerance is
close to zero because of the need for instantaneous decision making and, thus, models are
typically run on hardware in the car itself. Conversely, queries to a generative Al model like
ChatGPT have higher latency tolerance, allowing the data centres processing these queries
to be more distributed.

Table 1.1 provides an overview of four types of computing infrastructure, namely traditional
high-performance supercomputers for scientific applications, Al training clusters, Al
inference clusters, and cloud computing and web content servers. In addition, there are
other categories of computing infrastructure that we do not explore further, such as
telecommunications and 5G core network nodes, and units dedicated to processing
blockchain and cryptography.

1.3.4 How capable is Al and can we measure it?

Al capabilities have been evolving rapidly. Al models and applications have been steadily
adding new capabilities, giving users access to tools that approach or even exceed human-
level capabilities on some tasks and in some contexts. Ultimately, energy demand from Al
will depend on, among other factors, the speed and scale of uptake, which in turn depends
on Al's usefulness and impact. The energy sector therefore needs to grapple with the
capabilities of Al systems as it considers the outlook for Al adoption. This section presents a
brief synthesis while acknowledging that the field is moving very fast.

It is critical to note that significant caution must be applied when comparing human
capabilities with those of Al. In its current state, Al is trained and optimised to do specific
tasks, while human intelligence is adaptive, flexible and generalised across domains. Al
focuses on pattern recognition and can only mimic thought and reasoning. There are also
several challenges in defining benchmarks to test even restricted cognitive skills. For these
reasons, any comparison between Al and humans should focus on the skills and outcomes
related to specific tasks and take into account the difficulty of designing effective test
benchmarks.

Al systems were first able to approach and then exceed human capabilities in domain-
specific, highly data-intensive fields with clear rules and goals. The archetypal example of
such a domain is games that involve strategy. One example is the game of Go, which is far
more complex than chess —too complex for the approach taken by traditional chess engines
based on “brute force” calculation and pre-programmed game rules. Modern Al capabilities
were fully on display in 2016 when AlphaGo beat the Go world champion. This was a
significant moment in the development of Al as it demonstrated the ability of mainstream Al
techniques (reinforcement learning and neural networks) to exceed human capabilities in a
game that involved intuition and strategy. The highest-rated Go player has a rating of 3 890,
while Al model AlphaGo Zero has reached a rating of 5 185. These abilities to model vast but
structured solution spaces extend to scientific domains, such as modelling the complex
properties of materials or molecules.
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Figure 1.10 = Al performance in selected archetypal benchmarks, 2024
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As Al capabilities continue to evolve, some Al systems today are already
able to perform better than the highest-scoring humans in certain tasks

Notes: Go = the game of Go; Elo rating = a ranking system for players in games like chess and Go; GPQA = the
Graduate-Level Google-Proof Q&A Benchmark, consisting of highly challenging multiple-choice questions in
biology, physics and chemistry; Blocks world = a benchmark involving simple planning challenges in a
simulated physical environment. For the Blocks world Al score, we have chosen to give the score for Mystery
blocks world. For autonomous driving, level 4 = full autonomy in a limited set of contexts, level 5 = full
autonomy in all contexts.

Sources: IEA analysis based on data from EpochAl (2025a), Silver, et al. (2018), Valmeekam et al. (2023, 2024).

In recent years, frontier Al systems have begun to approach or exceed human-level
capabilities on tasks related to knowledge classification, summarisation and retrieval. For
these tasks, their huge knowledge bases result in high performance (i.e. close to or above
expert human level) across multiple academic disciplines. For example, the best Al systems
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match human PhD level on the Graduate-Level Google-Proof Q&A (GPQA) benchmark, which
consists of highly challenging multiple-choice questions in biology, physics and chemistry.

Al systems are also rapidly making progress on tasks related to reasoning and planning in
well-characterised domains with clear goals and well-structured processes, such as coding
and mathematics. Some of the leading Al systems have begun to approach expert human-
level abilities in these areas. However, in tasks related to reasoning and planning in more
open-ended, multistep domains, current Al systems still fall short of human capabilities and
struggle to generalise when subjected to unexpected problems and more complex cognitive
environments (e.g. simulated work or social environments or multistep novel plans).

Tasks requiring meta-cognition (i.e. thinking about thinking), the generalisation of logic to
novel situations and social intelligence are complex challenges, and Al models currently fall
short of human capabilities. While some models are making progress, Al systems are largely
not able to verify the correctness of their outputs or recognise when they are wrong or a
problem is unsolvable, resulting in so-called “hallucinations” even when performing
relatively simple tasks. They have trouble tracking and predicting the consequences of causal
effects across multiple steps or in more complicated open-ended situations.

Another area where Al systems currently fall short of human capabilities, but have been
making steady progress, is interacting with the physical world. This includes understanding,
predicting and acting in physical causal chains, particularly in novel situations. For example,
at present, fully autonomous vehicles are only being commercially deployed in certain cities
that have been minutely mapped in advance of deployment, as in this way, they can meet
certain thresholds on safety. Today’s autonomous taxis achieve an autonomy level of 4 after
learning across 20 million real-world miles, while human drivers are quickly able to achieve
an autonomy level of 5 after around 70 hours of practice.! Progress, however, is being made,
with autonomous systems in vehicles and robots being able to increasingly navigate complex
and unfamiliar terrains in demonstration projects. Part of the challenge holding back physical
Al relates as much to hardware as software, as robot “muscles” (i.e. motors) and sensors still
lack the precision and flexibility of human motor and sensory functions.

Various Al benchmarks and standardised tests have attempted to gauge the accuracy,
efficiency, speed of response and other capabilities of various models, and how they have
evolved over time. They have focused on language understanding and reasoning, the ability
to classify images, processing and comprehension of conversational speech, code generation
capabilities and even advanced reasoning capabilities at the frontiers of human expertise. Al
benchmarks, however, have limitations that necessitate a cautious approach to assessing
their implications. First, the Al models might have been trained and optimised to perform
well on such tests, or the benchmarks could form part of their training data (so-called data
leakage). Second, benchmarks tend to focus on testing capabilities in specific tasks rather
than holistic intelligence, creativity and adaptability in complex, open-ended, real-world
settings. There are also several other constraints around safety, bias and ethical blind spots.

! For autonomous driving, level 4 = full autonomy in a limited set of contexts, level 5 = full autonomy in all
contexts.
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Ultimately, while Al capabilities seek to mimic human abilities, benchmark tests do not yet
help us comprehensively measure how Al models might perform vis-a-vis a human. Yet, for
all their limitations, benchmarks offer a window into the evolving capabilities of Al models
that can complement data on real-world deployment.

Figure 1.11 > Accuracy of Al models in selected benchmarks, 2018-2024
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While Al benchmarks have several limitations and must be carefully interpreted,
Al models have been showing improved performance on key benchmark tests over time

Notes: The y-axis refers to the accuracy of models in the benchmark test under consideration. It does not
compare the ability of a model vis-a-vis a human. The benchmark test measuring coding ability is HumanEval
(Code Generation). The benchmark test measuring scientific understanding is the Graduate-Level Google-
Proof Q&A Benchmark (GPQA). The benchmark test measuring mathematics is the Mathematics Assessment
of Textual Heuristics (MATH) Level 5. The benchmark test measuring visual understanding is Visual
Commonsense Reasoning (VCR).

Sources: IEA analysis based on data from EpochAl (2025a), Papers With Code (2025), and Stanford University
(2024).

1.4 Energy for Al and Al for energy

In the energy sector, Al has numerous applications that can improve efficiency, reduce costs
and drive innovation. Examples include faster, cheaper and more accurate weather
forecasting for predicting the output of wind and solar photovoltaic plants, real-time
monitoring and optimisation of transmission lines and the use of Al to discover new battery
chemistries. Chapters 3 and 4 of this report explore extensively the application of Al for the
optimisation of today’s energy system and innovation in novel energy technologies.

At the same time, Al is also energy intensive. Globally, data centres consumed around 1.5%
of electricity consumption in 2024. Al is only one of a range of workloads that data centres
perform, but in anticipation of growing demand for Al-related services, investment in data
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centres is growing rapidly (see Chapter 5) and the size of the largest data centres is
increasing. In terms of power draw, a conventional data centre may be around
10-25 megawatts (MW) in size. A hyperscale, Al-focused data centre can have a capacity of
100 MW or more, consuming as much electricity annually as 100 000 households. Al-focused
data centres are increasing in size to accommodate larger and larger models and growing
demand for Al services. Historically, data centres have been highly concentrated in spatial
terms, posing significant challenges to local grids given their substantial power draw.

Figure 1.12 = Data cenire annual electricity consumption in household
electricity consumption equivalents and the spatial
concentration of various facilities versus proximity to urban areas
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Data centres tend to be geographically concentrated and located around cities;
a 100 MW data centre can consume as much electricity as 100 000 households

Notes: km = kilometre. The conventional data centre capacity considered is 25 MW. The hyperscale data
centre capacity considered is 100 MW. The largest under-construction data centre capacity considered is
around 2000 MW. The largest planned data centre capacity considered is 5000 MW. The spatial
concentration is calculated as the inverse of the linearised Nearest Neighbour Index, which is a mathematical
representation of how clustered or dispersed each category is, calculated via the ratio of the observed mean
distance to the expected mean distance.

As a result, in regions where data centres are concentrated, the share of electricity demand
going to data centres is disproportionately high (Figure 1.12). In Ireland, for example, data
centres consume around 20% of the metered electricity supply. There are 6 states in the
United States where data centres already consume over 10% of the electricity supply, with
Virginia leading at 25%. Data centres serve multiple types of workloads but expected demand
growth from Al is driving rapid investment. The following section details the energy
consumption pattern of Al models across their life cycle.
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Figure 1.13 = Global map of large data centre clusters, 2024
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Data centres are often located in large clusters,
potentially creating challenges for local electricity systems

Notes: GW = gigawatt. We define a data centre cluster as a group of data centres located within 100 km of
each other. The ten largest clusters have been named. The Pearl River Delta encompasses the combined
capacity of Guangzhou, Shenzhen and Hong Kong (China).

Source: IEA analysis based on data from OMDIA (2025).

1.4.1 Al model life cycle and energy consumption

Hardware manufacturing

The manufacturing of hardware for Al is energy intensive but along the life cycle accounts
for less energy than the operation phase. The most energy-intensive part is the
manufacturing of chips used in GPUs but also in server storage. For example, manufacturing
the latest state-of-the-art 3 nanometre (nm) chip requires around 2.3 megawatt hours
(MWh) per wafer (Garcia Bardon, et al., 2021). For a typical high-performance server
configuration, this amounts to more than 10 MWh for manufacturing compared with more
than 80 MWh for operation in a five-year lifetime (Figure 1.14). Of the energy needed for
manufacturing, 60% is estimated to be for wafer and semiconductor production, where
deposition, lithography and etching consume the majority. The remaining 40% is used for
auxiliary processes such as water preparation or cooling in the facility.

The energy required for manufacturing also depends on the computing power of the
product. In particular, the higher complexity of metal layers in the latest generation of chips
increases manufacturing electricity demand despite overall efficiency gains in the
manufacturing process. Conversely, continued improvement in the computing power of
chips increases the number of operations being executed by single units so that the
embodied energy per operation decreases (Schneider, et al., 2025).
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Figure 1.14 = Electricity intensity of wafer production by process step and
node type and server electricity demand
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New, more complex chip types require more energy, especially for lithography and
deposition, but manufacturing amounts to less than 20% of the total life-cycle demand

Notes: nm = nanometre. “Other” includes auxiliary processes, e.g. for cooling and water preparation in the
factory. “Operation” considers a server lifetime of five years.

Sources: IEA analysis based on Garcia Bardon, et al. (2021), Boavizta (2021), and Dell (2019).

The production of chips is highly concentrated geographically. More than 70% is located in
East Asia (BCG and SIA, 2021). Globally, the semiconductor industry is currently estimated to
consume more than 100 terawatt hours (TWh) of electricity per year (Greenpeace, 2023),
equivalent to around 1% of global industrial electricity demand. However, the impact is much
higher in certain geographies: for example, TSMC consumed more than 20 TWh in 2023,
which accounted for almost 10% of electricity consumption in Chinese Taipei. Most
semiconductors are used for other purposes, but data centres and especially Al are expected
to be the key drivers of semiconductor demand in the years to come.

Indirect emissions from the consumption of electricity are the most significant component
of emissions from hardware manufacturing. The high share of coal-fired electricity
generation in many important manufacturing countries leads to a high emissions footprint
for indirect emissions. Minor use of fossil fuels, usually around 5%, and process gases are the
main sources of direct emissions.

The construction of data centres and transport of intermediate materials in the supply chain
have a minor impact on the hardware footprint. The data centre construction, including the
materials required, accounts for less than 2% of life-cycle emissions.
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Model training

Model training refers to the process of the model learning from data to identify relationships
and patterns. Given a set of inputs, the model learns to generate an output, prediction or
action that aligns with the patterns identified in the training data and with the model’s
overarching objectives. In the last few years, the amount of data and calculations required
to train state-of-the-art Al models has grown exponentially. For example, estimates put the
training data for GPT-4 at around 4.9 trillion data points, and the training compute at around
22 trillion trillion calculations (that is, 2.2e25).

Training is a time-consuming and energy-intensive process. Training calculations are
performed on specialised computer chips such as GPUs. A single GPU can have a maximum
rated power consumption of 1 000 watts in the case of the latest and most powerful chip.
This is about as much as the power draw of a toaster. Large, state-of-the-art models are
trained on clusters of many GPUs. For example, GPT-4 was trained on 25 000 GPUs with a
combined rated power of around 10 MW (EpochAl, 2024). Additional power demand comes
from information technology (IT) equipment operating alongside the GPUs in the servers
used to train these models, such as CPUs, memory, networking equipment and switches.?
Adding the power demand of additional IT equipment and the cooling equipment gives a
total rated power of the equipment used to train GPT-4 of around 22 MW. This is equivalent
to the power draw of around 150 high-power electric vehicle charging stations.

It is estimated that GPT-4 was trained for around 14 weeks. Taking a load factor of 84%
(Shehabi, et al., 2024), this results in a training energy demand of around 42.4 gigawatt hours
(GWh), or around 0.43 GWh per day of training. This is equivalent to the daily electricity
consumption of around 28 500 households in advanced economies, or 70 500 households in
emerging market and developing economies. After training, models may undergo a process
of fine tuning, which is much less computationally intensive than training and therefore less
energy intensive as well.

Energy consumption for training varies substantially depending on the model size and
complexity and the hardware configuration. Comprehensive training data are not available
for all significant Al models. However, we have made an estimate of the energy consumption
of all large Al models developed since 2020 (Figure 1.15), using the following methodology:

®  We took the dataset of 283 large Al models maintained by EpochAl (EpochAl, 2025b).3
Given that training energy consumption scales with the computational intensity of
training, an estimate based only on large Al models is likely to cover the bulk of training
energy consumption.

2 |n the documentation to its dataset, EpochAl explains its methodology for calculating the total power draw
from model training. It multiplies the GPU power draw by 2.03 to account for non-GPU server hardware
(networking, switches and CPUs), based on the specifications of NVIDIA DGX H100 servers, and by a further
1.09 to account for non-IT load. See: https://epoch.ai/data/notable-ai-models-documentation#estimating-
power-draw

3 Large Al models are defined as those with a training compute of 1023 FLOP. The number of models in the
database is as of 24 March 2025.
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B For models with data on maximum training power draw and estimated training duration,
we computed the total training electricity consumption by multiplying these values by a
load factor of 84% (Shehabi, et al., 2024). Calculated this way, the largest Al model in
this dataset had a maximum training power draw of around 154 MW# and a training
electricity consumption of around 310 GWh.

B We then used this data to fit a statistical relationship between training compute
intensity and training electricity intensity. We used this relationship to model the
electricity consumption of models in the EpochAl dataset for which compute intensity
estimates are available.

®  Finally, we were left with the models in the EpochAl dataset for which neither compute
intensity nor maximum training power draw and training duration data were available.
For these models, we extrapolated the training electricity consumption by assuming that
these models have the average electricity consumption of all models estimated and
modelled under the preceding two steps.

In the absence of better data, this gives us at least an order of magnitude for the total training
electricity consumption of the large frontier Al models in the EpochAl dataset, which comes
to around 1 700 GWh (1.7 TWh). This is equivalent to around 0.001% of global electricity
consumption during this period from all sources, or 0.1% of the global electricity
consumption of data centres during these years.

Figure 1.15 = Estimated training-related maximum power draw, electricity
consumption and cumulative electricity consumption for a set of
large Al models since 2020
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Training the largest Al model today requires a power draw of around 154 MW; cumulative
training consumption for large Al models collectively is estimated at around 1 700 GWh

“4In practice, servers never hit their maximum designed power.
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Model use

After training and fine tuning, the model is deployed. Each time a user queries the model —
such as asking a question of ChatGPT —the model solves an enormous number of calculations
to develop its answer. These calculations are performed on similar high-specification GPU-
accelerated servers as are used during the training phase. How much electricity is used during
the query (or “inference”) phase depends on numerous factors:

®  Input query size and output answer length: longer input queries and output answers
require more compute and therefore consume more electricity.

B Modelsize: larger models require more compute to process inputs and outputs, and are
therefore more electricity intensive, all other things being equal.

®  Input and output mode: video and image generation are generally much more compute
intensive, and therefore electricity intensive, than text generation (Figure 1.16).

B Implementation of algorithmic efficiencies: different strategies are being deployed to
reduce the computational intensity of inference, for example by using mixture of experts
(MoE) models. At inference time, MoE models selectively activate only the parts of the
model most pertinent to solving the query in question, thereby saving on computation
and hence energy costs while preserving model performance.

m  Degree of inference-time scaling: recently released models, such as OpenAl’s 01 model
or DeepSeek’s R1 model, use what is known as inference-time scaling or inference
scaling to improve performance, notably on tasks involving reasoning or planning. In
intuitive terms, this involves the model “thinking” more intensively about its answer
before responding. Inference scaling can dramatically increase the computational and
energy cost of inference.

®  Hardware implementation: the specialised hardware used to run Al models has seen
consistent improvements in energy efficiency with each generation. For example, the
current state-of-the-art B200 GPU is 60% more energy efficient in terms of FLOP/watt
than the previous generation’s H100, which is in turn 80% more efficient than the
previous A100 generation (EpochAl, 2025c). Specific hardware implementation can
substantially influence energy intensity.

The energy consumption of different kinds of devices, machines or processes often depends
on context. For example, factors such as tyre pressure, road surface, temperature, wind
speed, driving speed and style, and air conditioning or heating use can have a large impact
on the fuel economy of cars. Real-world measurements suggest that the fuel consumption
and carbon dioxide emissions of internal combustion engine vehicles are around 20% higher
than Worldwide Harmonised Light Vehicles Test Procedure values, and around 3.5 times
higher for plug-in electric hybrid vehicles, largely because drivers do not charge and drive in
full-electric mode frequently (European Commission, 2024).

Similar caveats hold for estimates of the energy intensity of Al models, which are influenced
by numerous factors, including model and task type, hardware set-up, and operational
optimisations such as batch sizes, key-value cache management and attention
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management.® There is also a lack of transparency regarding the size and implementation of
most user-facing commercial Al models, which makes it impossible to measure their
compute requirements and ensuing energy demands. This lack of data makes it hard to
estimate energy consumption for the field of Al as a whole and for users and companies to
make informed choices when it comes to energy efficiency. Nonetheless, it is beneficial for
policy makers and consumers of Al models to have some benchmarks to understand the
electricity intensity of different kinds of models and tasks.

Box 1.2 > Did DeepSeek change the outlook for Al electricity demand?

Chinese company DeepSeek released its large reasoning model, DeepSeek-R1, on
20 January 2025. Markets took some time to digest the news, but one week later both
Al-related technology and energy stocks had fallen substantially. Key Al chip designer
companies were down 20% a week later, while the leading chip manufacturing
equipment provider was down 6%. Meanwhile, the stocks of key energy companies fell
by around 20% in the same period as a result of the uncertainty triggered by DeepSeek.
Many actors in the market asked whether the apparent efficiencies achieved by
DeepSeek changed the outlook for Al-related electricity demand.

DeepSeek uses a sophisticated MoE approach (see above), which reduces the activated
model size by 95% while preserving performance. This is equivalent to the model having
a large knowledge base but efficiently accessing only a small part of it to answer a given
question. It also uses an innovative approach to process much more efficiently the
contextual relationships between the different elements of the input question, focusing
only on the most important words of the question and paying less attention to the rest.®
Finally, DeepSeek calculates output words in parallel, not sequentially.” Given the input
“the cat sat”, DeepSeek would calculate the output, “on the mat”, as a single

” o u

computational step, rather than “on”, “the”, “mat” sequentially.

These innovations drive down the computational, financial and energy cost of training
and use. However, several countervailing factors also need to be considered. First, lower
costs may incentivise greater use. Second, despite the computational efficiencies
achieved, reasoning models such DeepSeek-R1 and OpenAl’s 01 model are substantially
more energy intensive than other large language models. This is because reasoning
models “think” more intensively while developing their answers (known as “inference-
time scaling”). While this can result in better answers on reasoning or planning problems,
it is far more energy intensive than traditional large language models and extremely
inefficient for knowledge retrieval or summarisation problems.

5 Batching refers to maximising the parallel processing power of GPUs by grouping tasks and running them
together rather than sequentially; it is analogous to running a dishwasher fully loaded. Key-value cache
management refers to techniques that optimise the efficient use of GPU memory, because reading and writing
data into memory is energy intensive. Attention management techniques include flash attention, which breaks
input data into separate, more efficient chunks for processing.

6 This approach is called multi-head latent attention (MLA).

7 This is known as multi-token prediction (MTP).
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This discussion highlights three themes that run through this report. First, substantial
progress has been made in making models more efficient, and this is certain to continue:
efficiency is both a software and a hardware issue. Second, cheaper, more efficient
models are likely not only to incentivise greater use but also more compute use to
improve performance, i.e. the rebound effect. Third, incentivising the efficient use of
models (i.e. the right model for the right task) will have a large impact on the energy
pathway of Al. This is likely to depend on the price and information environment that
users face, on the business models developed to amortise model training and
deployment, and on the regulatory and policy environment.

We therefore conducted an assessment of the energy intensity of different open-source
models across a variety of generative Al tasks.2 Initially, we present the results for isolated
tests taking into account only the GPU energy costs, as the GPU is the most energy-intense
part of the computation. Tests were performed on H100 GPUs. The results presented in
Figure 1.16 and Figure 1.17 should be seen as highly controlled experimental results — real-
world implementations are likely to differ. Further down in Figure 1.18, we present the
effects of operational optimisations that are implemented in the real world, such as batching.

Figure 1.16 = Indicative inference electricity consumption for selected
generative Al tasks in experimental conditions and the electricity
consumption of charging consumer electronics
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IEA. CC BY 4.0.

The electricity intensity of different generative Al tasks varies greatly -
generating a single short video can be as energy intensive as charging a laptop two times

Notes: Text generation, low =Yi-1.5 9B model with 9 billion parameters. Text generation, high = Llama 3.3 with
70 billion parameters. Image generation = SD-XL 1.0-base model. Video generation = CogVideoX-5b. For video
generation, the videos are 6 seconds long and 8 frames per second. Only the GPU electricity consumption is
shown in the figure as this is the metric for which the measurement is the most reliable.

8 We are thankful to Dr Sasha Luccioni for her collaboration on this analysis. All errors, omissions and
conclusions drawn from this analysis are those of the IEA alone.
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Figure 1.16 shows the GPU energy consumption of different model tasks under test
conditions. Text generation using a small language model takes around 0.3 Wh. Using a
medium-sized language model consumes around 5 Wh. Image generation takes around
1.7 Wh per task. Video generation, however, is two orders of magnitude more energy
intensive, taking around 115 Wh to generate a short, relatively low-quality video (6 seconds
in length, at 8 frames per second). To put these numbers into perspective, charging a mobile
phone or laptop requires around 15 Wh and 60 Wh, respectively.

Figure 1.17 = Indicative inference electricity consumption across different
model types for text generation tasks in experimental conditions
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Very small LM Small LM Medium-sized LM Large Large reasoning
MoE model

Model design and model choice have large impacts on electricity intensity

Notes: LM = language model; MoE = mixture of experts. Very small LM = SmolLM2-1.7B-Instruct. Small LM =
Yi-1.5. Medium-sized LM = Llama 3.3 with 70 billion parameters. Large MOE = Mixtral-8x 22B. Large reasoning
model = DeepSeek-R1. Only the GPU electricity consumption is shown in this graph as this is the metric for
which measurement is the most reliable. The large reasoning model electricity consumption was estimated
based on the relationship in electricity consumption observed between DeepSeek and a language model of
the same size for a specific sample of prompts (O'Donnell, 2025).

However, it is also important to note that Al models come in many different sizes and set-
ups. Larger models tend to perform better in terms of accuracy and quality. However, they
also consume much more energy. To explore the importance of model size and set-up for
energy consumption, we performed the same text generation task on several different
language models. The very small language model tested had 1.7 billion parameters and
consumed 0.1 Wh for the task. The medium-sized language model tested had around
40 times more parameters and used more than 40 times more electricity to perform the task
(around 4 Wh). The MoE model tested had two-and-a-half times more parameters than the
medium-sized language model but consumed only around 45% more electricity on the task.
We also estimated a large reasoning model (DeepSeek-R1, see Box 1.2). As noted above,
reasoning models “think” more when developing their responses, using inference-time
scaling to give better answers on reasoning-intensive problems like maths and coding.
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However, using a reasoning model on a simple text generation task uses twice as much
electricity as a model of a comparable size (Figure 1.17). While these tests isolate the issue
of model performance, they clearly highlight that model design and choice have large
impacts on electricity intensity.

In the real world, inferences are often processed through batching. This means grouping
different independent inputs together and processing them in parallel. By handling multiple
inputs simultaneously, batching allows for more efficient utilisation of GPU computing
capabilities that would otherwise be underutilised, thereby increasing per-token energy
consumption.

Figure 1.18 = Impact of batching on electricity consumption per task for
inference across various generative Al models
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Efficiency measures for inferencing such as batching
halve the electricity consumption per task

Notes: LM = language model; MoE = mixture of experts; e = estimated. Only the GPU electricity consumption
is shown in this graph as this is the metric for which measurement is the most reliable. Efficiency gains are
estimated based on the relationship observed between batch size, number of parameters of the model and
normalised GPU electricity consumption per token (Argerich and Patifio-Martinez, 2024).

Figure 1.18 shows estimates of the efficiency gains achievable through batching. It is worth
mentioning that such gains have diminishing returns with increasing batch size. Batching is
also constrained by the memory capacity of the hardware, making large batch sizes
impractical for very large models or for hardware with a smaller memory size.
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Box 1.3 > A bag of heuristics to go from tasks to TWh

Humans use heuristics (rules-of-thumb) as important tools in our reasoning processes.
There is some evidence that Al models do too. Heuristics can be useful, but care needs
to be taken to ensure that they are not overly simplified and are applied in the right
situation. Here we use heuristics to understand the relationship between electricity
demand from data centres and their potential output.

Looking ahead, electricity demand from data centres, driven in particular by Al, is
projected to grow by several hundred TWh (see Chapter 2). This box tries to answer the
question: how much inference demand for generative Al would it take to consume
100 TWh of electricity? For reference, in 2023, the largest four hyperscalers (Google,
Amazon, Meta and Microsoft) had a combined data centre electricity consumption in the
order of 90 TWh.

B Alarge language model, with optimised implementation, could generate more than
4 250 trillion words of output with 100 TWh of input. For comparison, this is
equivalent to around 110 million copies of the Encyclopaedia Britannica.

B An image generation model could generate around 55 trillion images with around
100 TWh of input.

®  Avideo generation model could generate in the order of 950 million hours of videos
with 100 TWh of input. To put this in perspective, Netflix viewers streamed around
94 billion hours of content in the second half of 2024.

These numbers provide rough orders of magnitude of the scale of generative Al outputs
that could be produced with 100 TWh of electricity input. They highlight that this scale
of generative-Al driven electricity demand is plausible once multimodal outputs are
stacked together (text, image, video). These estimates should be seen as rough
approximations, because real-world model implementations may be more efficient than
the experimental conditions that were used for this report. On the other hand,
commercial models also tend to be more powerful and therefore possibly more energy
intensive than the open-source models we tested in this report.
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Chapter 2

Energy for Al
The evolution of energy demand and how to meet it

SUMMARY

e Artificial intelligence (Al) model training and deployment occur mainly in data centres.
In total, electricity consumption from data centres is estimated to amount to around
415 terawatt hours (TWh), or about 1.5% of global electricity consumption in 2024. It
has grown at 12% per year over the last five years.

® QOur Base Case projections for data centre electricity consumption are grounded in the
latest industry expectations for server shipments. Three sensitivity cases (Lift-Off,
High Efficiency and Headwinds) capture uncertainties in efficiency improvements in
hardware and software, Al uptake and energy sector bottlenecks.

® |n the Base Case, electricity consumption from data centres rises to around 945 TWh
by 2030, more than doubling from the 2024 level. The United States sees by far the
largest absolute growth, followed by China and Europe. Data centres still account for
less than 10% of the growth in global electricity consumption to 2030.

® The Lift-Off Case assumes stronger Al uptake and limited local constraints on data
centre buildout. In this case, consumption reaches over 1 260 TWh by 2030. The High
Efficiency Case is driven by energy savings in both software and hardware;
consumption reaches around 800 TWh by 2030. In the Headwinds Case, it reaches
around 670 TWh. By 2035, the spread of uncertainty widens further, spanning
700 TWh to 1 720 TWh across the four cases.

e Natural gas generation to meet data centre demand increases by around 175 TWh
from today’s level to 2035 in the Base Case, mostly concentrated in the United States.
In the Lift-Off Case, it grows by 290 TWh. Renewables provide the largest contribution
to meet data centre demand, increasing by 450 TWh to 2035 in the Base Case. This
reflects their broad availability, short development times, economic competitiveness
and technology sector procurement strategies. Nuclear power also contributes.

® Grid congestion and connection queues are growing in many regions, and supply
chains for key components like transformers and gas turbines are stretched. In our
analysis and modelling of these factors, we estimate that around 20% of the projected
data centre additions by 2030 in our Base Case could be at risk of delay.

® Avoiding this risk will require a range of actions from both the energy and technology
sectors. Permitting times for new projects need to be cut. Grid operators should
streamline the confusing tangle of data centre connection applications. The
technology sector should maximise the buildout of data centres in areas of high power
and grid availability and explore strategies to incentivise their operational flexibility.
Better management of the growing data centre load could be facilitated by better
data on both grid constraints and the data centre demand outlook.
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2.1 Introduction

Investment in new data centres has surged, increasing by nearly 70% in the last two years at
the global level. One of the main drivers of this investment has been the rise of artificial
intelligence (Al), alongside the deepening digitalisation of the global economy. The rapid
increase in data centre investment is raising concerns about the ability of electricity systems
to meet growing demand in a timely, secure and sustainable way.

Data centres —at least at the scale seen today —are relatively new actors in the energy system
at the global level, and data collection and reporting on their electricity consumption remain
limited. There is therefore substantial uncertainty about both their current and future
consumption. Moreover, Al models are highly heterogeneous, and data on their uptake and
electricity intensity are limited (see Chapter 1). As a result, it is challenging to analyse the link
between Al demand and data centre electricity consumption.

On the electricity supply side of the equation, the sector is facing several challenges.
Electricity demand is already growing strongly in emerging market and developing
economies, driven especially by economic growth, industrialisation, increased adoption of
appliances, and surging needs for cooling. Advanced economies are also returning to growth
in electricity demand after two decades of stagnation. However, the electricity sector faces
several bottlenecks, including permitting times and tangled supply chains.

This chapter explores these issues across the following sections:

B Section 2.2 sets the scene by describing the determinants of data centre electricity
consumption and how much electricity data centres consume today.

m  Section 2.3 presents new International Energy Agency (IEA) modelling on the outlook
for electricity demand from data centres.

B Section 2.4 places data centres within the broader context of the information and
communication technology (ICT) sector and discusses how the uptake of Al may
influence the energy consumption of the ICT sector beyond data centres.

B Section 2.5 examines electricity supply scenarios to meet the demand growth from data
centres.

B Section 2.6 discusses how data centres interact with grids and what can be done to avert
the risk of project delays due to electricity sector constraints.

2.1.1 Case design

The uncertainty surrounding future data centre electricity demand requires a scenario-based
approach to explore alternative pathways and provide perspectives on timelines relevant to
energy sector decision making. While the technology sector moves quickly and a data centre
can be operational in two to three years, the broader energy system requires longer lead
times to schedule and build infrastructure, which often requires extensive planning, long
build times and high upfront investment. At the same time, information on the project
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pipeline for new data centres extends only a few years into the future. Industry forecasts for
key variables — such as chip and server production and shipments — are likewise short term
(three to five years), reflecting the rapid pace of innovation and inherent uncertainties
surrounding key drivers of data centre demand, notably Al uptake.

For these reasons, we present our cases across two timeframes. Section 2.3.1 focuses on
projections to 2030 and the results of our Base Case (see below). Section 2.3.2 takes a slightly
longer-term, exploratory approach, presenting results to 2035 and for a wider range of cases.
The underlying assumptions of these four cases are briefly described as follows, with more
details provided in sections 2.3.1 and 2.3.2:

B The Base Case explores the trajectory of electricity consumption in data centres under
current regulatory conditions and industry projections. The key driver in this case in the
near term is industry projections for server shipments to 2028 and a continuation of this
trend after 2028. Efficiency improvements are expected to continue playing a pivotal
role in limiting strong growth in energy consumption, despite increasing demand for
digital services.

B The Lift-Off Case assumes stronger growth in Al adoption than in the Base Case. A more
resilient supply chain and greater flexibility in data centre location, powering and
operations enable faster data centre deployment.

®  The High Efficiency Case shares similar constraints and drivers with the Base Case but
assumes stronger progress on energy efficiency in software, hardware and
infrastructure. As a result, the same level of demand for digital services and Al is met
with a reduced electricity consumption footprint.

B The Headwinds Case captures the impact of a downside in the outlook for data centre
deployment, particularly due to slower than expected Al adoption. The emergence of
local bottlenecks, along with a tight supply chain, causes delays in capacity expansion
compared to the most ambitious industry projections.

Given the novelty and technical specificity of data centres as actors in the energy system, the
next section presents a brief set of definitions to help readers navigate the rest of the
chapter. Readers more familiar with the sector may wish to skip this section and move
directly to section 2.2.1, where we present the historical trends in data centre electricity
consumption.

2.1.2 Key definitions and concepts
There are several types of data centres. In this report, we use the following categorisations:

®  Enterprise data centres are run by businesses or institutions for their own use. They are
typically smaller and less efficient than other types of data centres and represent around
28% of data centre capacity today. Their share has been steadily decreasing over time,
from 85% in 2005.
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Colocation and service provider data centres lease space to customers to house their
own computing and storage equipment (colocation) or provide both the space and
computing equipment (service providers). Both types of data centres can accommodate
hundreds or thousands of customers; an estimated 36% of capacity falls into this
category today.

Hyperscale data centres are massive facilities operated by major technology companies,
such as Amazon Web Services, Google, Meta and Microsoft. They use scalable, highly
efficient infrastructure to support cloud services, web hosting and, increasingly, Al
services. Their role has grown quickly from around 10% of data centre capacity in 2010
to 37% today.

Figure 2.1 = Data cenire components
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Effective design and integration of key data centre components
ensure continuous operation and optimal performance

Data centres are facilities used to house servers, storage systems, networking equipment
and associated components that are typically installed in racks and organised into rows
(Figure 2.1). This information technology (IT) equipment, and the range of auxiliary
equipment required to keep it in working order, comprises the following:

52

Servers are computers that process and store data. They can be equipped with central
processing units (CPUs) and specialised accelerators, such as graphics processing units
(GPUs). On average they account for around 60% of electricity demand in modern data
centres, although this varies greatly between data centre types (Figure 2.2).

Storage systems are devices used for centralised data storage and backup and account
for around 5% of electricity consumption.
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Networking equipment includes switches to connect devices within the data centre,
routers to direct traffic and load balancers to optimise performance. Networking
equipment accounts for up to 5% of electricity demand.

Cooling and environmental controls consist of equipment that regulates temperature
and humidity to keep IT equipment operating at optimal conditions. The share of cooling
systems in total data centre consumption varies from about 7% for efficient hyperscale
data centres to over 30% for less-efficient enterprise data centres.

Uninterruptible power supply batteries and backup power generators keep the data
centre powered during outages. These are rarely used but are necessary to ensure the
extremely high levels of reliability that data centres must meet.

Other infrastructure includes lighting and office equipment for onsite staff, etc.

The share of these different components in data centre electricity consumption varies greatly
by data centre type, depending on the nature and efficiency of the equipment installed.
Figure 2.2 presents the typical breakdown for different data centre types in operation today.

Figure 2.2 > Share of electricity consumption by data centre and equipment
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Hyperscale data centres are the most efficient,
with the bulk of electricity going to servers and other IT equipment

Several technical characteristics determine data centre electricity consumption:

Installed IT capacity refers to the operating servers, storage and networking devices and
is measured in megawatts (MW). Total installed capacity includes both IT capacity and
the power capacity of auxiliary equipment. In many cases, data centres are only partially
filled with servers. Maximum designed capacity refers to the maximum capacity of a
data centre if it is filled with servers; in many instances, it is smaller than the total
installed capacity.
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B The utilisation rate of IT equipment measures how much of the available computing
resources are actively being used over a given period. Smaller and less-efficient
enterprise data centres have average utilisation rates below 20%, while hyperscale data
centres with optimised loads can have average utilisation rates of up to 50%.

® Idle power is the amount of electricity a device consumes to perform essential
background operations when not actively processing workloads. It is typically expressed
as a percentage of maximum rated power. A lower idle power is more efficient. Idle
power has improved from around 60% in 2010 to around 35% of rated power in modern
servers.

®  Power usage effectiveness (PUE) is the ratio of total facility electricity consumption to
the electricity consumption of the IT equipment (PUE = total consumption/IT
consumption). It is commonly used as an important indicator of the energy efficiency of
a data centre, with a focus on minimising infrastructure electricity consumption (such
as cooling and lighting) compared to the electricity consumption of IT equipment. This
measure can vary widely from around 2 (meaning 1 kilowatt hour [kWh] of electricity
used for cooling and auxiliary equipment for every 1 kWh of electricity used by IT
equipment) for enterprise data centres to just under 1.15 for hyperscale data centres
(0.15 kWh used for cooling and auxiliary equipment for every 1 kWh used by IT
equipment).

Data centre servers deploy several kinds of chips and server architectures:

®  Central processing units (CPUs) are the primary components of a computer that carry
out instructions from programs by performing operations.

B Graphics processing units (GPUs) and other “accelerators”, such as tensor processing
units, are optimised for parallel computations, enabling faster processing of certain
tasks.

B Accelerated servers are specialised servers equipped with GPUs or similar accelerator
chips to enhance computing performance for specific tasks. They are particularly
important for Al training and deployment.

2.2  Electricity consumption of data centres

2.2.1 Historical electricity consumption of data centres

A sharp acceleration in recent years

The Internet revolution took off in the 1990s, and early growth in the demand for digital
services was strong. The electricity consumption of data centres in the United States almost
doubled between 2000 and 2005, raising concerns about runaway growth (Koomey, 2007).
An inflection point occurred around 2007-2008, when slowing growth in data centre
electricity consumption indicated a decoupling from the still-booming demand for digital
services. Several factors contributed to this slowdown in global data centre electricity
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consumption, including the migration of service demand to more efficient, larger data
centres (colocation, service provider and hyperscale), but also continued improvements in
hardware efficiency and operating efficiency (declining idle power ratios, for example).

Figure 2.3 > Total data centre electricity consumption by equipment type

and data centre type, 2005-2024
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After a decade of limited growth, data centre electricity
consumption began to accelerate again after 2015

Note: GW = gigawatt; TWh = terawatt hour.
Sources: IEA analysis based on data from IDC (2024a), OMDIA (2025), and SemiAnalysis (2025).

However, a sharp acceleration in data centre electricity consumption took place from around
2017 onwards. Important drivers of this step change were the growth of cloud computing,
the shift to online media consumption, the wider use of social media platforms and the rise
of Al, which increased the demand for high-performance computing, facilitated by the rise
of accelerated servers. Between 2015 and 2024, the capacity of accelerated servers grew
four times faster than the total capacity of servers. While accelerated servers are much more
efficient on a per-task basis, they also unlocked many new tasks, that were not possible on
conventional servers. These new capabilities, among other factors, drove an increase in
service demand that outstripped the pace of continued efficiency improvements.

Figure 2.4 provides another view of the drivers of electricity consumption by data centres
from 2005 to 2015 and then from 2015 to 2023. From 2005 to 2015, global Internet Protocol
(IP) traffic, mobile broadband subscriptions and active social media accounts grew by more
than 25% per year. These are proxies for the rapid initial growth in demand for digital
services. Growth rates moderated in the period from 2015 to 2023. In contrast, the growth
rate of the total stock of servers in data centres accelerated from an annual growth rate of
4% seen in the period 2005 to 2015 to 8% per year from 2015 to 2023. Several key indicators
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of efficiency saw faster improvements from 2005 to 2015, including the rate of the shift from
less-efficient enterprise data centres to more-efficient hyperscale, colocation and service
provider data centres. As a result of these trends, data centre electricity consumption growth
accelerated from 3% annually from 2005 to 2015 to 10% annually from 2015 to 2024.

Figure 2.4 > Average annual change in key drivers of data centre electricity
consumption globally, 2005-2015 and 2015-2023
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* Data starts in 2007. ** Data ends in 2022, estimated for 2022.

Sources: IEA analysis based on data from Cisco (2008), Cisco (2015), Cisco (2019), ITU (2025), Meltwater
(2024), SPEC (2024), and World Bank (2024a).

Box 2.1 > What share of data centre electricity demand comes from Al?

How much electricity demand comes from Al specifically is a challenging question to
answer. Al is only one of the workloads that run on data centres, and as Al becomes
increasingly pervasive, a clear distinction between Al-related and non-Al-related
workloads becomes more challenging. There is no comprehensive data on the share of
different kinds of workloads, and service providers or colocation data centre operators
often have limited visibility over the specific workloads running in their facilities.
Moreover, there are often differences in the definition of Al, with some traditional Al
sometimes being excluded. In this context, the range of estimates for the share of Al in
total data centre electricity consumption is very wide (Figure 2.5).

As a second-best approach, estimates often rely on the electricity consumption of
accelerated servers as a proxy for the share of Al in total electricity consumption from
data centres. Accelerated servers accounted for 24% of server electricity demand and
15% of total data centre demand in 2024.
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Figure 2.5 = Estimated data centre electricity demand due to Al, 2020-2030
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Sources: IEA analysis based on data from Deloitte (2024), Gartner (2024), Goldman Sachs (2024),
Schneider Electric (2024), SemiAnalysis (2024), and Shehabi, et al., (2024).

However, this is an imperfect proxy for total Al electricity consumption. Al workloads,
especially training, are often run on this type of specialised hardware, but some Al
inferencing tasks also run on conventional servers, and some non-Al related tasks, such
as high-performance scientific computing, are run on accelerated servers. Looking ahead,
some Al inferencing workloads could move from data centres to end-user devices such
as mobile phones and laptops (see section 2.4), further increasing uncertainty about
Al-related electricity demand.

Data centre electricity consumption is not spread evenly around the world

The United States, Europe and China account for around 85% of global electricity
consumption from data centres today. In the United States, electricity consumption from
data centres grew by around 12% a year between 2015 and 2024. Data centres accounted
for around 180 TWh of electricity consumption in 2024 in the United States, nearly 45% of
the global total and more than 4% of US electricity consumption from all sources (Figure 2.6).

In China, the data centre sector started to expand significantly from 2015 onwards, with
electricity demand growing 15% per year between 2015 and 2024, more than twice the rate
seen between 2005 and 2015. Over the same period, electricity consumption across all
sectors grew at an annual rate of around 7%. As of today, data centres account for
approximately 100 TWh of electricity consumption, roughly equivalent to that of electric
vehicles in China. The country accounts for around 25% of global data centre electricity
consumption, up from less than 20% a decade ago. However, substantial data gaps make it
challenging to accurately estimate China’s data centre electricity consumption (IEA, 2025).
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Figure 2.6 = Electricity consumption of data centres by region, 2005-2024
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The acceleration in data centre electricity consumption observed in 2017
was mainly driven by the United States and, to a lesser extent, by China

Data centres account for slightly less than 2% of Europe’s electricity consumption, a share
that is higher than China’s (1.1%). However, in absolute terms, Europe’s consumption is
lower, at an estimated 70 TWh in 2024. Europe’s share of the global electricity consumption
of data centres has decreased over the past decade but still represents slightly above 15%.
In Japan, we estimate that data centres account for less than 20 TWh of electricity
consumption (about 2% of Japan’s total consumption, on a par with Europe). We estimate
that data centres account for around 9 TWh of consumption in India (Box 2.2), or about 0.5%
of total consumption. However, the sector appears poised for rapid growth.

Box 2.2 > Country focus: India

India has a thriving ICT sector, with the value of IT exports steadily growing to over
USD 200 billion in 2024. By comparison, the world’s largest oil exporter earned
USD 220 billion on export revenues that year. India is also home to around 950 million
Internet users. Spurred by data localisation requirements in some sectors, India is now
emerging as a rapidly growing data centre market. As of June 2024 India had 2 GW of
total installed data centre capacity in operation, together consuming electricity
equivalent to 6.5 million Indian households. India’s total installed data centre capacity
has doubled in only four years, and over 2 GW of further maximum designed capacity is
in the pipeline and planned to come online over the next two years. This means that total
installed capacity is on track to reach nearly 5 GW by 2030 (Figure 2.7).

The government’s IndiaAl Mission, with a budget of USD 1.2 billion, consists of several
objectives, including the development of an Al computing ecosystem with over
18 000 GPUs to support Al start-ups and research. In addition, there are incentives from
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state governments for data centres; for instance, Uttar Pradesh announced a 100%
exemption on electricity duty and transmission charges for ten years for new data
centres.

Electricity consumption from data centres is contributing to India’s electricity demand
growth at a time when India is already among the world’s fastest-growing electricity
markets. Coal fuels 74% of electricity generation in India today, providing much of the
firm power to the grid, and the dominance of coal in the mix is likely to continue beyond
2030. However, since India’s “open access” rules enable the direct purchase of power
from generators, several technology companies are signing power purchase agreements
(PPAs) directly with renewable energy generation companies to reduce their emissions.
For example, the data centre subsidiary of Indian telecommunications major Bharti Airtel
announced it would procure 140 GWh of renewable energy annually and has been
working with generation companies to set up captive solar photovoltaic (PV) and wind
capacity for their data centres.

To ensure that the upcoming wave of new data centre construction remains on target,
India will need to address long-standing issues of grid reliability to capitalise on data
centre and Al growth. In the current context, backup and captive power generation for
data centres remains a critical consideration owing to the risk of power supply
interruptions from the grid. Grid infrastructure creation and upgrades will also need to
keep track of new data centre construction. Data centres are proving to be important
energy consumers in India, creating additional demand for power generation, notably
from solar PV and wind, and driving investment in power backup options (including
battery storage) and transmission infrastructure upgrades.

Figure 2.7 = India’s total data centre capacity and electricity generation
mix, 2020-2030

Total installed data centre capacity
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IEA. CC BY 4.0.
Data centre total installed capacity in India is set to double by 2030; while coal
dominates the electricity mix in India, the share of renewables increases to 35% by then
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Data centre electricity consumption from a broader perspective

With the rapid growth seen in recent years, the data centre sector accounted for around 4%
of global growth in electricity consumption between 2014 and 2024. However, other drivers,
such as growing appliance adoption in buildings and industrial electrification, were more
significant. Data centres accounted for around 250 TWh of incremental electricity
consumption in this period, roughly equivalent to the electricity demand of Spain. In
comparison, the electricity consumption of space cooling grew by around 700 TWh
(Figure 2.8).

Figure 2.8 = Increase in electricity demand by sector in the Base Case,
2014-2024
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Over the past decade, growth in electricity demand for data centres
increased by almost as much as for transport

All historical data are estimates, not measurements

Currently, very few governments mandate reporting and publication of comprehensive
statistics on data centre electricity consumption (see Chapter 5). As a result, all data on the
historical consumption of data centres at the global level are the result of estimates based
on a variety of sources. These sources come with different challenges and gaps; combined
with the lack of common definitions (Masanet, Lei and Koomey, 2024), this results in widely
divergent estimates, even for historical consumption.

Often, companies and institutions that track or report on data centre capacity, including real
estate companies, consulting companies and data centre operators, do not use a consistent
scope or definitions. A key distinction is between the maximum designed capacity and the
actual installed IT capacity. Data centres are often not filled to their maximum designed
capacity, and IT capacity is usually ramped up progressively in new data centres. Access to
detailed data on the installed capacity of data centres requires subscriptions to expensive
third-party data services, an option that is often not available to many actors.

60 International Energy Agency | Energy and Al



Several recent studies rely on outdated or overly simplistic PUE assumptions due to a lack of
high-quality, publicly available data for different data centre types and regions. The load
factor of data centres is also marked by uncertainty. This metric is determined by IT
equipment utilisation rates and idle server power consumption, both of which vary greatly
across different workloads and hardware configurations. Combined with a lack of available
data, this complicates aggregate load factor estimations, leading to significant discrepancies
in consumption estimates.

The rapid adoption of GPUs and other accelerated server designs further compounds these
challenges. There are limited available data on annual shipments and the installed stock of
accelerated servers. This has a large impact on demand estimations, as accelerated servers
are much more power intensive than conventional servers. Finally, companies operating in
the sector, including hyperscale and colocation providers, largely do not report their data
centre electricity consumption specifically.

As a consequence, all historical data regarding global data centre electricity consumption are
modelled estimates, not measured data, and the range of estimates is wide (Figure 2.9).
Triangulating multiple data sources does lead to broadly converging estimates that align with
the IEA estimates provided in this chapter (Kamiya and Coroama, 2025a). However, the
process is intensive in time, resources and expertise. The data and methodological annex to
this report provides more details on the methodology used by the IEA to estimate data centre
electricity consumption from data centres.

Figure 2.9 > Comparison of three approaches to estimating global data
centre electricity consumption, 2023
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Different modelling approaches can lead to a wide range of estimates

Source: IEA analysis based on data from Kamiya and Coroama (2025a).
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2.3  Outlook for electricity consumption from data centres

Our modelling approach relies on a bottom-up methodology developed by Lawrence
Berkeley National Laboratory, using IT equipment shipments as a key driver of data centre
energy demand (Shehabi, et al., 2024). The rise of Al is accelerating the deployment of high-
performance accelerated servers, leading to greater power density in data centres.
Understanding the pace and scale of accelerator adoption is critical, as it will be a key
determinant of future electricity demand. The key input to our modelling is therefore near-
term industry projections for server shipments, considering the outlook for demand and
supply constraints (IDC, 2024a). Readers interested in more methodological details can find
these in the data and methodological annex to this report.

2.3.1 Outlook in the Base Case

Key drivers

In the Base Case, Al adoption alongside continuously deepening digitalisation drives the
expansion of the data centre sector. The key drivers of electricity consumption from data
centres evolve as follows in the Base Case:

B The total stock of servers is projected to increase by more than 60% by 2030, with
around a third of this increase due to the extended lifetime of servers. The total stock
of accelerated servers increases even more strongly, but the share of accelerated
servers in the total stock of servers remains below 10%.

B The total installed capacity of data centres, which includes all installed IT equipment,
cooling systems and auxiliary equipment, increases by more than the increase in the
stock of servers, because the power intensity of servers (watts/server) increases
substantially. This is due to the increase in the size and number of accelerated servers.
A key driver of the increase in the average wattage of accelerated servers is the rising
number of accelerators per server, with servers containing eight accelerators
representing a significant share of the stock of accelerated servers by the end of the
decade. The rated power of such servers can cross the 10 kilowatt (kW) mark; in
comparison, the rated power of servers with two accelerators is below 2 kW. In the Base
Case, the total installed capacity of data centres more than doubles from around
100 GW today to around 225 GW in 2030. The total capacity of accelerated servers
grows by almost five times, compared to an increase of 1.8 times for conventional
servers.

B Cooling efficiency continues to improve in the Base Case. This is driven primarily by
advancements in cooling technologies and data centre operational management, rather
than a strong shift from enterprise data centres to more efficient colocation or
hyperscale facilities. In the Base Case, the share of server capacity hosted by enterprise
data centres slowly declines below 20% from 2024 to 2030. The global weighted average
PUE is projected to improve, decreasing from 1.41 to 1.29 on average, saving around
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90 TWh of electricity demand. This represents around a 30% reduction in cooling
requirements per unit of IT electricity used.

®  Continuous hardware development has driven ongoing improvements in energy
efficiency, a trend expected to persist. However, the operational efficiency gains of
accelerated servers may be reaching their limit due to high utilisation and limited scope
for further idle power reductions. In contrast, conventional servers are expected to see
significant efficiency improvements over the next decade, particularly through
reductions in idle power consumption. Nonetheless, the Base Case factors in continued
improvements in hardware efficiency of both conventional and accelerated servers.

Figure 2.10 = Breakdown of the factors driving electricity demand growth in
data centres in the Base Case, 2024-2030
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The main drivers of growth in electricity consumption from data centres
are the increases in the stock and wattage of servers

Global results

Global electricity consumption by data centres is projected to reach around 945 TWh by 2030
in the Base Case, representing just under 3% of total global electricity consumption in 2030.
This is more than double the estimated approximately 415 TWh for 2024 (Figure 2.10), which
accounted for around 1.5% of today’s global electricity demand. From 2024 to 2030, data
centre electricity consumption grows by around 15% per year, more than four times faster
than the growth of total electricity consumption from all other sectors. However, in the wider
context, a 3% share in 2030 means that the data centre share in global electricity demand
remains limited.

Electricity consumption in accelerated servers, which is mainly driven by Al technology
adoption (Box 2.1), is projected to grow by 30% annually in the Base Case, while conventional
server electricity consumption growth is slower at 9% per year. Accelerated servers account
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for almost half of the net increase in global data centre electricity consumption, while
conventional servers account for only around 20%. Other IT equipment and infrastructure
(cooling and other infrastructure) account for around 10% and 20% of the net increase,
respectively (Figure 2.11). All three types of data centres — enterprise, colocation and server
provider, and hyperscale — contribute to the growth in electricity consumption.

Figure 2.11 = Global data centre electricity consumption in the Base Case,

2020-2030
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Around 70% of the growth in electricity demand from servers
between 2025 and 2030 comes from accelerated servers

Regional results

The United States, China and Europe are projected to remain the largest regions for data
centre electricity demand over the coming years. However, other regions are experiencing
strong growth in data centre development, positioning them to play increasingly important
roles in the global data centre landscape. A notable example is Southeast Asia, where
electricity demand from data centres is expected to more than double by 2030, partially due
to the presence of a regional hub in Singapore and southern Malaysia (Johor province).

China and the United States are the most significant regions for data centre electricity
consumption growth, accounting for nearly 80% of global growth to 2030. Consumption
increases by around 240 TWh (up 130%) in the United States, compared to the 2024 level
(Figure 2.12). In China it increases by around 175 TWh (up 170%). In Europe it grows by more
than 45 TWh (up 70%). Japan increases by around 15 TWh (up 80%).

Comparing data centre electricity consumption normalised per capita can give a sense of the
importance of this sector in different economies. Africa has the lowest consumption at less
than 1 kWh of data centre electricity consumption per capita in 2024, rising to slightly less
than 2 kWh per capita by the end of the decade. However, there are strong differences within
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the region, with South Africa showing strong growth and per-capita consumption more than
15 times larger than the continental average in 2030, with an intensity higher than 25 kWh
per capita. By contrast, the United States has the highest per-capita data centre
consumption, at around 540 kWh in 2024. This is projected to grow to over 1 200 kWh per
capita by the end of the decade, which is roughly as much as 10% of the annual electricity
consumption of a US household. This intensity is also one order of magnitude higher than
any other region in the world.

An interesting trend is observed in China, where data centre consumption normalised per
capita — at around 70 kWh in 2024 — is poised to overtake that of Europe (slightly less than
100 kWh). By 2030, per-capita consumption in China reaches around 200 kWh, slightly less
than the level seen in Japan (270 kWh) but more than the level in Europe (165 kWh).
Per-capita consumption in India remains an order of magnitude lower, at around 15 kWh.

Figure 2.12 = Data centre electricity consumption and data centre electricity
consumption per capita by region in the Base Case, 2020-2030
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The United States and China combined account for 80%
of the growth in data centre consumption

The growth of data centre consumption in the Base Case within the broader context

Despite the strong increase, data centre electricity demand growth accounts for less than
10% of global electricity demand growth between 2024 and 2030 in the Base Case
(Figure 2.13). Other key drivers, such as industry output growth and electrification, the
deployment of electric vehicles and the adoption of air conditioning, lead the way. However,
while the absolute growth may appear smaller, data centres, unlike electric vehicles, tend to
concentrate in specific locations (see section 2.6.2), making their integration into the grid
potentially more challenging.
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Figure 2.13 = Increase in electricity demand by sector in the Base Case,
2024-2030
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Data centres contribute more to global electricity demand growth
than heavy industry or space and water heating

2.3.2 Outlook in the sensitivity cases

In this section, we present the results of our longer-term exploratory modelling of different
potential outcomes for electricity demand. The results are presented to 2035, notably to
inform the energy sector about possible outcomes on timelines consistent with energy sector
planning horizons. These numbers serve as exploratory scenarios to inform technology and
policy choices. It is crucial to consider the wide range of uncertainties, including the scale of
Al adoption and the efficiency with which this additional service demand will be met (Luers,
et al.,, 2024).

Lift-Off Case

This case explores the impact of stronger Al adoption and increased global demand for digital
services, leading to even stronger deployment of data centre facilities than in the Base Case.
This drives higher demand for accelerated servers to handle complex, power-hungry
workloads. It is assumed that the supply chain will be highly adaptable, with scalable
production capacity and minimal inertia. This would prevent shortages of high-performance
chips.

Importantly, it is assumed that various actions mitigate the local constraints on data centre
development. First, data centres are assumed to have greater location flexibility than in the
Base Case. The increased share of workloads with low latency requirements (e.g. Al training
and several kinds of Al inference) reduces the need for proximity to customers. Instead,
locational decisions can prioritise factors like generation capacity, grid availability and land
accessibility. This shift reduces the risk of local project concentration and, in turn, opposition
to new developments. Second, higher structural flexibility is assumed to make grid
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integration less challenging. Combined with operational flexibility, the Lift-Off Case assumes
a trend towards higher reliance on onsite generation for data centre demand, with the grid
serving as backup. This approach could mitigate grid saturation risks. While clean power
generation, such as renewables or even small modular nuclear reactors in the future, can be
deployed for onsite generation, natural gas is also deployed for this purpose in the Lift-Off
Case (see section 2.5.4).

The Lift-Off Case trajectory sees global electricity demand from data centres in 2035 that is
around 45% higher than in the Base Case, exceeding the 1 700 TWh mark and reaching 4.4%
of global electricity demand (Figure 2.14).

Figure 2.14 = Global data centre electricity consumption by sensitivity case,
2020-2035
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The outlook for data centre electricity demand is highly uncertain, driven by factors
including efficiency improvements, Al uptake and potential energy sector bottlenecks

High Efficiency Case

In this case we assume that Al and digital services demand follows the same trajectory as in
the Base Case. However, several efficiency strategies are implemented to counterbalance
the increased energy demand resulting from the higher adoption of digital technologies,
particularly Al. Efficiency improvements are primarily driven by a shift from enterprise data
centres to colocation and service provider facilities, including highly efficient hyperscale data
centres. This results in a reduction in the aggregated PUE, which falls to around 1.13 by 2035
compared with 1.21 in the Base Case.

Alongside these improvements, greater software efficiency plays a crucial role in the High
Efficiency Case. This relies on approaches such as reducing energy demand per task through
code optimisation and innovative algorithms, similar to past trends where improvements in
algorithm efficiency significantly limited the growth of conventional computing demand. This
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scenario assumes that models are “right-sized” for different tasks, with the technology sector
aiming to reduce inference costs and consumers facing an information and incentive
environment that supports decision making. OpenAl’s GPT-4.5 roadmap can be seen as a
step in this direction, as it introduces the ability to adjust model compute use based on query
complexity, thereby optimising resource use without compromising performance (OpenAl,
2025). Additional improvements are also projected on the hardware side, for example
through the penetration of full- and semi-custom integrated circuits, application-specific
integrated circuits and field-programmable gate arrays, which is higher than in the Base Case,
enabling significant energy savings. These specialised processors deliver far better energy
performance compared to general-purpose processors like GPUs (see the Spotlight below on
the future of computing).

All these efficiency improvements result in a smaller installed IT capacity than in the Base
Case, but one that still meets the same service demand. In aggregate, the High Efficiency
Case unlocks energy savings of more than 15%, with global electricity demand from data
centres reaching around 970 TWh by 2035. As a result, 2.6% of global electricity demand
goes to data centres.

Headwinds Case

In this case, service demand does not grow as fast as in other scenarios, and Al sees a slower
uptake. Difficulties in monetisation lead to a pullback in investment. This case also assumes
stronger local constraints. Additional limitations, such as in the electricity supply chain (see
Chapter 5), cause delays in data centre development in this case. As a result, the total
installed IT stock by the end of the decade is projected to be smaller than in the Base Case,
with growth plateauing beyond 2030 (this still means growing service demand, as the stock
of IT equipment becomes more efficient over time). Similar to trends seen in the early 2010s,
the improvements in efficiency are expected to offset most of the impact of increased IT
stock utilisation, leading to a plateau in energy demand at around 700 TWh, limiting the
growth of the data centre share of global electricity demand to less than 2% in 2035.

SPOTLIGHT

Energy efficiency has played a fundamental role in curbing energy demand growth from
data centres over the past 20 years. Despite the massive growth in Internet users, data
traffic and the digital intensity of the economy (Figure 2.3), data centre consumption as
a share of global electricity demand has only increased from 1% in 2005 to 1.5% in 2024.

However, with the shift away from enterprise data centres mostly tapped, Al servers
already being highly optimised and utilised, and the approaching limits to semiconductor
miniaturisation, this raises questions over further energy efficiency opportunities in data
centres and the extent to which technologies and approaches can help curb energy
demand growth to 2030 and beyond.
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Researchers have explored the opportunity of improvements in software, algorithms and
hardware architectures (Leiserson, et al., 2020). These opportunities —some of which are
specific to Al and others broadly across data centres and computing — can be generally
categorised into hardware, software and cross-cutting approaches, which are briefly
explained below. Table 2.1 outlines their current adoption levels, likely level of
deployment in 2030 and scale of energy savings potential. These do not consider rebound
effects that could counteract such energy efficiency improvements.

Hardware

B Low-power processors: processors designed to minimise power consumption,
e.g. ARM-based CPUs, Intel Atom processors.

B Al accelerators: specialised hardware that can perform Al tasks quickly and
efficiently, e.g. servers (Nvidia GPU, Google TPU) and devices (NPU, Apple Neural
Engine).

B Task-optimised hybrid processors: processors that combine specialised processing
units (“chiplets”) for specific tasks within a single package to maximise performance
and energy efficiency, e.g. AMD Epyc CPUs.

®  Photonic integrated circuits: using light (photons) instead of electricity (electrons)
to process information, reducing energy waste and enabling faster, more efficient
data handling.

B  Energy-efficient memory and storage: using memory and storage technologies that
minimise power consumption, e.g. low-power DDR5 memory and NVMe solid-state
drives.

B Memory proximity: placing data closer to the processor to reduce data transfer
distances and energy consumption, e.g. high-bandwidth memory integrated with
GPUs.

B Innovative cooling technologies: advanced cooling methods to remove heat from
data centres more efficiently, reducing energy use for cooling, e.g. liquid cooling
systems (direct-to-chip, immersion).

Software

B Energy-efficient algorithms: developing Al algorithms that require less energy.

B Task-specific models: smaller and more specialised Al models that are tailored to
specific tasks rather than large, general-purpose models.

B Model and code optimisation: refining existing model architectures, code and
software to reduce computational resource and energy use.
Cross-cutting

®  Co-design of software/hardware: co-designing software and hardware to leverage
synergies to maximise energy efficiency and performance.
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B Edge computing: running Al inference closer to end-users (devices, edge servers),

B Virtualisation: running multiple virtual machines on a single physical server to

® Intelligent energy management: intelligent power and task management,

B Quantum computing: computing that uses quantum mechanics to perform vastly

®  Neuromorphic computing: computing that mimics the brain’s neural architecture to

Table 2.1 > Current and potential 2030 energy savings in data centres
from key technologies and approaches

reducing data transmission and running smaller models on more energy-efficient on-
device processors and distributing energy use over many distributed devices.

increase utilisation rates and reduce the number of physical servers needed.

e.g. allocating tasks to energy-efficient hardware, using Al to monitor and adjust
cooling and computational resource allocation to reduce energy use at the data
centre level.

more complex computation than classical computing techniques, e.g. IBM Quantum,
Google Willow, Microsoft Majorana 1 and Amazon Ocelot.

process data and computations more efficiently compared to classical computing,
e.g. IBM TrueNorth and Intel Loihi 2.
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2.4 Implications of Al for ICT sector energy use

Data centres are part of the broader ICT sector,® which also includes telecommunication
networks and end-user devices such as laptops and smartphones (ITU, 2018). The
implications of Al for energy use in data centres — and in the broader ICT sector — depend
largely on how generative Al is adopted and deployed, both of which are highly uncertain.
This section explores possible scenarios and their implications.

Consuming around 360 TWh of electricity in 2023, data centres accounted for one-third of
overall ICT sector electricity use, estimated at over 1 000 TWh? in 2023, equivalent to 4% of
global electricity use (Figure 2.15). Telecommunication networks, including fixed and mobile
access and core networks, consumed around 280 TWh, while personal computers, mobile
phones and other connected devices used around 440 TWh.

Figure 2.15 = Global electricity demand from data centres, data transmission
networks, devices and cryptocurrency mining, 2015-2023
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Energy use by data centres and cryptocurrencies have risen sharply since 2020,
while devices and networks have seen slower growth

Notes: CPE = customer premises equipment, including routers and modems; PCs = personal computers,
including laptops and desktops. Networks include core and access networks. Other devices include the
Internet of Things and surveillance cameras.

Sources: IEA analysis based on data from Malmodin and Lundén (2018); IEA (2023); GSMA (2024) World Bank,
(2024b); Malmodin, et al. (2024); Kamiya and Coroama (2025); Cambridge Centre for Alternative Finance
(2025), and company reports.

1 According to the ITU-T L.1450 Recommendation, the ICT sector includes ICT end-user goods, ICT network
goods, data centres and ICT services (e.g. software). User devices intended primarily for entertainment, such
as televisions and gaming consoles, are accounted for in the entertainment and media sector.

2This figure excludes cryptocurrencies as well as the entertainment and media sector (including televisions,
gaming consoles, cable television networks and content production), which are considered outside the ICT
sector footprint.
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Cryptocurrencies and televisions are large energy users often associated with the ICT sector
but are technically outside the sector scope according to definitions from the International
Telecommunications Union. Cryptocurrencies — primarily from Bitcoin mining — consumed
around 125 TWh in 2023 (0.5% of global electricity), while televisions, peripherals and cable
television networks consumed around 500 TWh (2% of global electricity).

Data centres have contributed most to ICT sector energy growth since 2020, increasing by
over 90 TWh between 2020 and 2023. Energy used for cryptocurrency mining has also
increased strongly, growing by over 50 TWh since 2020.

Energy use by telecommunication networks has grown slightly, driven by strong growth in
5G mobile networks but partially offset by reductions in fixed networks from the switch from
copper to fibre optic networks. Energy use by devices decreased in the early 2010s due to
efficiency gains (e.g. switching from personal computers to laptops and telephones and from
cathode ray tubes to liquid crystal displays) but has since increased, driven by the growth in
the number of devices and new segments, such as the Internet of Things and surveillance
cameras. There is considerable uncertainty around overall energy use by devices due to a
lack of comprehensive data regarding use patterns and stocks.

2.4.1 Drivers and outlook for edge applications of Al

Most Al-related energy demand currently comes from large, centralised cloud and
hyperscale data centres — both for training and inference (Kaack, et al.,, 2022). Some
inference tasks are already conducted on user devices, as well as hybrid approaches where
initial processing is done on the device and the final request is sent to a data centre. A
broader shift towards Al inference at the “edge” of the network (closer to end-users) could
have important implications for energy use — both in terms of where energy is consumed and
how much is needed to support Al applications.

Moving Al inference applications to the edge — to edge data centres and end-user devices
such as laptops and smartphones — can be advantageous for use cases where fast response
(reduced latency) is critical (Chen and Ran, 2019). On-device Al inference may also be
important for operational resilience in situations where network connectivity is poor or when
handling large volumes of data (e.g. video analysis). In addition, on-device Al inferencing
offers improved data privacy by avoiding the transfer of sensitive data to centralised data
centres.

To facilitate on-device Al inferencing, device manufacturers are increasingly integrating Al
acceleration hardware into laptops and smartphones, such as neural processing units (NPUs),
Google’s Tensor chip, and Apple’s neural engine (ANE). This specialised hardware consumes
much less power than CPUs and GPUs for Al tasks and can offload tasks from CPUs and GPUs
to save power. However, compared to large data centres, edge devices face important
resource constraints on computation, storage and power, limiting the type and size of the Al
models they can run (Box 2.3).
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Box 2.3 > Which Al models can run on smartphones and laptops?

Al models that can run on user devices are smaller and more efficient versions of their
cloud-based counterparts. Given the computational and energy constraints of
smartphones and laptops, these models are compressed and optimised to have fewer
parameters, require less memory and use less power, and often involve trade-offs
between efficiency and accuracy.

Many new smartphones sold today have processors that are capable of handling models
with hundreds of millions of parameters, allowing them to complete tasks such as
enhanced voice recognition and natural language processing for virtual assistants, real-
time object detection and tracking for augmented reality, computational photography
and some generative Al capabilities.

The latest flagship smartphones have processors that can handle models with well over
a billion parameters, such as Google’s Tensor G4 (30 to 45 tokens per second for a model
with over 3 billion parameters) and Qualcomm’s Snapdragon 8 Gen 3 (15 tokens per
second for a 10 billion parameter model). Al acceleration hardware on flagship phones
has become increasingly powerful. For example, the Apple A18 chip used in the iPhone 16
series (introduced in 2024) is capable of 35 trillion operations per second, around
six times more powerful than the A13 Bionic on the iPhone 11 from 2019.

Laptops, edge servers and other devices with significant processing power
(e.g. automated vehicles) can handle even larger models and complex tasks with higher
accuracy. Nvidia announced its USD 249 Jetson Orin Nano Super computer in December
2024, capable of 67 trillion operations per second while consuming 25 watts (W). In
January 2025, the company announced Project DIGITS, offering 1 petaflop of Al
performance, enabling it to support Al models with up to 200 billion parameters. DIGITS
will sell for USD 3 000 from May 2025.

Early studies estimate that NPUs on laptops consume in the range of 1 W to 5 W for most Al
tasks. For example, generating 25 images with Stable Diffusion V2.1 consumed around 2 W
to 4 W per image (Weinbach and Bajarin, 2024). Another study compared the power
consumption of CPUs, GPUs and NPUs using the YOLOV5 object detection model at varying
model sizes and precisions (Delli Abo, 2024). The NPU was found to use the least power
(1.8 W to 2.5 W) compared with the CPU (27 W) and GPU (23 W to 51 W). Even factoring in
the longer inference time, the NPU was still the most energy efficient, followed by the power-
intensive but faster GPU. The power consumption of an NPU on a smartphone was estimated
to be around 0.5 W, around 80% lower than the CPU (Tan and Cao, 2023).

Laptops typically consume between 20 W and 60 W during active use, making any
incremental energy consumption from Al inference (1 W to 5 W) relatively small. With
smaller and more optimised models at the edge, the shift towards Al inference at the edge
is likely to reduce energy use in data centres with only a limited increase in energy use by
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devices. Shifting inference tasks to edge devices can also help electricity systems by
distributing power demand across different locations and time.

Beyond the likely net energy savings from edge Al, there are potential negative indirect
energy and environmental impacts from manufacturing Al-enabled devices. On-device Al
capabilities and minimum hardware requirements for increasingly prevalent Al-powered
applications could accelerate device replacement cycles in the near term. This could reverse
the slowing of turnover rates over the past decade, with average replacement cycles for
smartphones reaching 3.5 years (GSMA, 2025). International Data Corporation projects sales
of generative Al smartphones (with NPUs capable of 30 trillion operations per second) to
grow by 80% annually to 2028, reaching around 900 million units (70% market share) (IDC,
2024b). Combined with the fact that Al acceleration hardware requires more energy to
manufacture than conventional (non-Al) counterparts, shorter device lifespans and new
demand for Al-enabled devices could increase manufacturing-related energy use and
contribute to e-waste generation, particularly in the near term.

The impacts of widespread generative Al adoption on data traffic and the energy use of data
transmission networks are highly uncertain. Ericsson predicts that most of the trafficincrease
from Al — particularly from uplink data — will be due to video-based generative interactions
using smartphone cameras, smart glasses, or extended reality devices to engage their
environment or ask questions to a video-based large language model (Ericsson, 2024). It also
predicts that most of these Al workloads will be executed in the cloud in real time or pre-
rendered to generate hyper-personalised content. Some medium-complexity Al workloads
may migrate to smartphones, mitigating some traffic growth.

However, the extent to which increased data traffic would affect network energy use is
uncertain. Recent studies have demonstrated that fixed and core networks generally use the
same amount of energy regardless of data traffic (Mytton, Lundén and Malmodin, 2024). In
the case of mobile networks, capacity is just one factor that affects energy use, with coverage
also being an important driver (Rouphael, et al., 2023). Within the context of other larger
drivers of data traffic and connections — notably streaming video, the Internet of Things and
extended reality — Al is unlikely to have a noticeable impact on network energy use, especially
in the near term.

In addition to Al inferencing at the edge, training on edge devices could have impacts on
energy use across the ICT sector. Federated learning enables Al models to be trained on
decentralised data using edge devices such as smartphones and laptops. Instead of bringing
the data to a central server, federated learning brings the model training to the data source.
Early studies have shown the potential for federated learning to reduce energy use and
emissions associated with Al training (Qiu, et al., 2021).
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2.5 Electricity supply to meet data centre demand

2.5.1 Procurement strategies of technology companies

Procuring electricity supplies that are reliable and cost-effective is crucial to meeting the
rapidly growing electricity demand from data centres. Many technology companies and large
data centre operators have set ambitious goals for reducing emissions and procuring clean
energy (Table 2.2). To meet these objectives, data centre operators use various procurement
strategies. These vary by company and region, with liberalised electricity markets generally
offering more procurement choices than regulated markets. In addition to sourcing the grid
electricity mix, procurement strategies include acquiring electricity through PPAs. Many
companies also purchase renewable energy certificates to meet their clean energy targets.

The recent surge in data centre electricity demand has led to significant interest in additional
natural gas-fired power generation, largely in the United States, where natural gas is a low-
cost fuel. Gas turbine manufacturers are reporting an uptick in orders, and several large data
centre operators have announced partnerships with utilities and energy companies
developing new gas-fired power capacity. In Louisiana, for example, Entergy Louisiana is
planning more than 2 GW of additional gas-fired power generation to provide power for
Meta data centres. NextEra Energy and GE Vernova also aim to develop natural gas-fired
power generation projects across the United States, primarily to meet the growing electricity
demand of data centres. At the same time, many US utilities are currently revising their
integrated resource plans to account for rising data centre electricity demand, proposing
additional natural gas-fired capacity to meet it. To bring down emissions, some data centre
operators are considering fitting natural gas-fired plants with carbon capture in the long run.

Most renewable energy PPAs are financial agreements for annual volumes of electricity and
are not tied to the hour-to-hour consumption profile of a data centre or the generation
profiles of the renewable assets, which can also be located in different regions. While these
PPAs help data centre operators meet their clean energy targets, the separation of
renewable generation and data centre consumption often means other sources, like natural
gas or coal, are used to meet physical electricity needs. This results in a physical electricity
mix that differs from the procured, or “financial”, electricity mix.

To enhance their sustainability strategies and further support decarbonised grids where they
operate, some technology companies are concluding PPAs with hourly matching. This means
that some or all of their electricity consumption is matched hour-by-hour by a portfolio of
renewable energy and storage assets, or other types of low-emissions power generators
located in the same region. For instance, Google seeks to achieve hourly matching, and
Microsoft has signed hourly PPAs in support of its goal to be carbon negative by 2030. In
order to achieve these goals, they are moving to deploy portfolios of renewable energy and
storage projects that can increase hourly matching, as well as signing PPAs with dispatchable
sources of low-emissions electricity, such as hydro, nuclear, geothermal or natural gas with
carbon capture. In September 2024, for example, Microsoft and Constellation Energy
concluded a 20-year PPA for the restart of the Three Mile Island nuclear plant.
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Table 2.2 > Emissions reduction and clean energy targets of corporate data
centre operators

Estimated Net zero Corporate clean, Hourly
Company data centre  emissions green or renewable Current matching
capacity (MW) target year electricity target* Shas target*
Meta 9780 2030 100% renewable since 2020 100%
Google 8960 2030 100% renewable since 2017 100% 100% by 2030
Amazon 7 660 2040 100% renewable since 2023 100%
Microsoft 6970 2030 100% renewable by 2025 100% 100% by 2030
Digital Realty 2740 66%
Equinix 1850 2030 100% renewable by 2030 96%
Tencent 1760 2030 100% green by 2030 12%
Alibaba Cloud 1660 2030 100% clean by 2030** 56%***
Aligned 1290 2040 100% renewable since 2020 100%
Huawei 1260 2040 >50%
Apple 1240 2020 100% renewable since 2018 100%
Vantage 1180 2030 58%
CyrusOne 1120 2030 tl)soz‘y(;;grbc’"'free enerey 62%
NTT Data 1110 2035 100% renewable by 2030** 49%
QTS Data Centers 1060 65%****
Baidu 980 2030 5%
GDS 980 2030 100% renewable by 2030 36%
Chindata 900 2060 100% renewable by 2040** 7%
Switch 660 2021 100% renewable since 2016 100%
Princeton Digital 620 2030 100% green by 2030 14%

* Only targets with specified years are included. ** Target covers data centres only. *** Percentage of clean
electricity consumed at Alibaba Cloud’s self-built data centres. **** Percentage of low-emissions electricity
utilised by QTS facilities.

Notes: Data centre operators are ranked by their total estimated data centre capacity as of the end of the first
half of 2024, based on OMDIA (2025). The OMDIA database may not be complete but was used to provide a
consistent source across diverse companies for installed capacity. The net zero targets are for Scope 1 and
Scope 2 emissions.

As part of these strategies, technology companies are also supporting the development and
commercialisation of innovative low-emissions baseload technologies, such as small modular
reactors (SMRs) and next-generation geothermal. To date, plans to build up to 25 GW of SMR
capacity associated with supplying the data centre sector have been announced worldwide,
almost all of them in the United States, although projects are at varying stages of maturity
and certainty. The first projects are expected to start to materialise only towards the end of
this decade.
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Advances in geothermal technology, including horizontal drilling and hydraulic fracturing
pioneered by the oil and gas industry, are promising to increase the number of locations in
which geothermal energy could be harnessed to provide a cost-competitive source of
baseload electricity. Google has partnered with Fervo Energy, which developed a 3.5 MW
first-of-its-kind next-generation geothermal power pilot project in Nevada. This project
started feeding electricity into the grid in November 2023. In June 2024, Google and NV
Energy, Nevada’s utility, entered into a power supply agreement for Fervo’s 115 MW Corsac
next-generation geothermal project, which is currently under development. Meta has signed
an agreement with Sage Geosystems for 150 MW of capacity to power its data centres from
2027, while Microsoft and partner G42 are planning the construction of a data centre campus
powered by geothermal power in Kenya.

As an alternative to procuring electricity from utilities or through PPAs, some technology
companies are co-locating data centres with power generation facilities, enabling them to
generate some or most of their own electricity directly. The primary benefit of co-locating
generation is potentially faster development times, as this approach can allow them to
downsize or opt for an interruptible grid connection, saving costs and helping to alleviate
grid congestion. The downsides are higher complexity, increased permitting requirements,
higher investment costs, potentially lower reliability and a greater maintenance burden.

Recent years have seen rising interest in co-locating data centres and generation assets.
Google is partnering with Intersect Power and TPG Rise Climate to develop co-located clean
energy projects with data centres, aiming for completion by 2027. Chevron and Engine No. 1
are partnering with GE Vernova, with plans to supply up to 4 GW of natural gas capacity to
co-located data centres, aiming to start operations by the end of 2027. Amazon and Talen
Energy have signed a 10-year PPA for 300 MW to 960 MW of nuclear energy from the
Susquehanna nuclear plant to supply a co-located data centre, although a recent Federal
Energy Regulatory Commission ruling on the repurposing of existing grid-connected power
plants to directly provide power to co-located loads halted plans to expand the electricity
supply beyond the initially awarded 300 MW. The commission has recently initiated a
process to examine the colocation policy.

Box 2.4 > Data centre operators are leading the corporate PPA push

A PPA is a long-term contract in which an electricity generator sells power to a buyer at
a fixed price for a specified period. In regulated markets, green tariffs can serve a similar
role, with a utility acting as an intermediary. To date, nearly 120 GW of operational
renewables capacity has been procured through corporate PPAs globally (Figure 2.16).
Technology companies operating data centres account for over 30% of this capacity. In
2024, technology companies’ renewables PPAs were sufficient to cover roughly 20% of
the estimated 415 TWh of global electricity demand from data centres.

An additional 60 GW of PPA-related capacity is currently under development — meaning
projects for which financing and/or permits have been secured or which are under

Chapter 2 | Energy for Al 77




construction. Almost 40% of this capacity is contracted by data centre operators. Data
centre operators have also been responsible for the lion’s share of recent
announcements, accounting for almost 60% of the 34GW of the renewables capacity for
which corporate PPAs have been announced but which has not yet entered the
development stage. Projects that are under development or have been announced would
provide sufficient capacity to cover approximately 15% of the projected electricity
demand growth from data centres to 2030.

Figure 2.16 = Global renewables capacity contracted through corporate
PPAs by development status, offtaker and technology

Global renewables PPA capacity (GW) DC operator PPAs by technology (GW)
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Data centre operators account for over 30% of active PPAs
and the majority of announced PPAs

Notes: Op. = operational; Dev. = under development; Ann. = announced; DC = data centre; PPA = power
purchase agreement. The cut-off date is February 2025. Only individual known projects are considered.
Other includes bioenergy and geothermal.

Source: IEA analysis based on data from BNEF (2025).

Of the operational renewables PPA capacity contracted by data centre operators, 75% is
located in the United States, with nearly 20 GW of solar PV and about 12 GW of onshore
wind under contract there, followed by Europe with 20%. Over 50% of the capacity under
development is also located in the United States — almost of all of it solar PV, while
Europe accounts for around 35%. In the European Union and United Kingdom, offshore
wind farms account for most of the under-development capacity contracted by data
centre operators in the region. Announcements for additional PPAs have so far focused
mostly on the United States, with nearly 90% of the announced capacity. While there has
recently been an increase in announcements from other parts of the world, including
Southeast Asia and India, significant regulatory hurdles continue to limit the deployment
of PPAs, in particular in emerging market and developing economies.
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2.5.2 Matching electricity supply with data centre demand

Electricity supply to meet data centre demand can come from a wide set of sources, each
with unique characteristics related to technical performance, cost, emissions, the
development process and lead times. Consideration of these options, either to be developed
onsite or connected through the grid, is critical to scaling up electricity supply to meet data
centre demand.

Table 2.3 > Sources of electricity to match the needs of data centres

Global average CO, Global average

Electricity Construction Variable or

X N intensity LCOE
source period dispatchable (£ CO,/kWh) (USD/MWh)
Utility solar PV 1-4years Variable 0 60
Wind onshore 2-5years Variable 0 50
Wind offshore 3-7 years Variable 0 110
Hydropower plant 5-15years Variable (run-of-river) 0 80

Dispatchable (reservoir)
Conventional

geothermal 3-8years Dispatchable 0 80
Nuclear (new) 5-15years Dispatchable 0 90
Nuclear (restart) 2-5years Dispatchable 0 60
Coal 3-6years Dispatchable 960 80
Gas CCGT 2-4years Dispatchable 390 80
Gas GT 1-3years Dispatchable 620 220
Grid connection 3-7+years Dispatchable United States: 350 -

China: 600

Southeast Asia: 610

Europe: 240

World: 460

Notes: CO, = carbon dioxide; g CO,/kWh = grammes of carbon dioxide per kilowatt hour; CCGT = combined-
cycle gas turbine; GT = gas turbine; LCOE = levelised cost of electricity; MWh = megawatt hour. Construction
period refers to typical projects, excluding supply chain equipment delays. Average emissions intensity is
assessed on direct emissions from the average mix between 2021 and 2023. Other assumptions come from
the WEO-2024 (IEA, 2024). Nuclear (new) includes small modular reactors.

As data centres are projected to grow rapidly over the years to come, the strategy to build
out and ensure a stable and efficient source of electricity becomes crucial. Currently, the only
reliable electricity sources that can be developed within a short timeframe — ideally one to
two years (Table 2.3) — are solar PV and gas turbines, aligning with the typical construction
timeline of data centres. Even in these cases, supply chain delays or tight supplies can further
extend development times (Box 2.5). Wind turbines could also be a viable option in terms of
deployment speed; however, lengthy permitting processes often extend their timeline to
around five years, a similar development time to conventional geothermal, or longer. Other
dispatchable technologies, such as large-scale nuclear reactors or hydropower plants,
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typically require closer to a decade or more to complete. Once SMRs or next-generation
geothermal become commercial, they may also offer medium-length development times of
approximately three to five years.

Box 2.5 = Will strained supply chains slow down the growth of natural gas-fired
power generation?

Low fuel costs, high reliability and the ability to operate at high load factors make natural
gas-fired generation an attractive option for data centre operations in the United States,
in particular. Several gigawatts of new capacity targeting the data centre market have
been announced by developers in late 2024 and early 2025. These announcements come
on top of the substantial volumes of new gas-fired capacity planned by utilities to meet
overall electricity demand growth.

As a result, orders for new gas turbines from utilities and project developers have surged
over the past two years. However, this sudden increase in orders is hitting a global gas
turbine supply chain that has seen limited investment in manufacturing capacity due to
years of stagnant electricity demand in advanced economies and a recent slowdown in
global additions of gas-fired power. Global additions of natural gas plants peaked at
nearly 110 GW in 2002, have averaged around 60 GW per year since then and have fallen
to an average of 40 GW per year since 2020.

Three main manufacturers — GE Vernova, Siemens Energy and Mitsubishi Power — supply
turbines for about two-thirds of the gas-fired power plants currently under construction
globally and are reporting growing backlogs. Turbine deliveries for new power plants now
face delays of several years in many instances. The uptick in activity has meant that other
elements of supply chains, including labour and other goods, are also tight, potentially
delaying the commissioning of new gas-fired power plants beyond 2030.

These extended delivery timelines cast doubt on the ability of utilities and energy
companies to scale up natural gas-fired generation as quickly as planned to meet rising
demand, especially in the near term. They are also driving up capital costs for the
developers of new gas-fired plants. High demand and constrained supply increase the
pricing power of the turbine manufacturers. Longer delivery timelines lead to increased
financing costs and can disrupt construction schedules, increasing the risk of cost
overruns. Consequently, some developers are opting to pay premiums to move to the
front of the queue for turbine deliveries.

The strained supply chain is also affecting existing plants. Servicing activity and new unit
production compete for factory capacity, and as manufacturers prioritise the production
of new turbines, this reduces the availability of refurbishment capacity and component
parts, raising the risk of plant outages. Additionally, the increased demand has driven up
the cost of new long-term gas turbine maintenance contracts, raising plant operating
expenses.

80 International Energy Agency | Energy and Al



The projected growth in electricity demand means that there is a need for additional
secure capacity to ensure the reliability of the electricity supply. In the United States, the
revised integrated resource plans of the country’s utilities call for an additional 84 GW of
natural gas-fired capacity by 2035 (see Box 2.6 for more details). The limited availability
of gas turbines may require utilities and project developers to explore alternatives to new
natural gas-fired plants to address near-term growth in the demand for electricity and
secure capacity. This includes upgrading existing plants to enhance their electrical
output, although tight supply chains have seen lead times for such measures go up as
well. Technical improvements, such as retrofitting better turbine blades, water injection
and inlet air cooling, can increase the efficiency and raise the capacity of simple open-
cycle gas turbines by 3-10%. If applied to the United States’ fleet of existing open-cycle
gas turbines, such refurbishments could provide about 4 GW to 15 GW of additional
capacity. If sufficient space is available at the site, open-cycle gas plants can also be
upgraded to combined-cycle through the addition of a heat recovery steam generator
and steam turbine. A combined-cycle gas turbine power plant can produce up to 50%
more electricity from the same amount of fuel.

Technology costs are another important factor in considering supply options to meet data
centre demand. Wind and solar PV technologies are currently among the cheapest sources
of electricity. Additionally, in regions where natural gas prices are low, such as the
United States and the Middle East, gas turbines offer an alternative. To be comparable with
dispatchable sources of electricity, solar PV and wind need to be paired with storage to
increase their availability throughout the day, but the cost comparison remains valid. Coal-
fired power can be one of the lowest-cost sources of electricity in places where prices on CO,
emissions are low or zero, but development times for coal plants can be quite long outside
China.

Emissions at the point of electricity generation are an important factor, especially in light of
the sustainability targets set by many technology companies and national and international
climate goals. Coal-fired power has the highest emissions intensity of the potential options
(oil-fired power is of a similar level), with natural gas-fired power plants emitting roughly half
as much CO; per unit of electricity output. Excluding indirect emissions from their life cycle —
such as extraction, manufacturing and decommissioning — renewable energy and other low-
emissions sources like nuclear energy have no direct CO, emissions.

Hourly matching: What does it really take?

The most common arrangements for procuring renewable electricity are based on annual
volume matching. Annual matching means that enough capacity is procured to meet 100%
of the user’s electricity demand over the course of the year, without consideration of
precisely when demand and supply occur. Conventional “annual matching” PPAs can help
drive the installation of new renewables capacity. However, hourly matching of low-
emissions electricity PPAs ensures that electricity consumption in each hour of the year is
met by low-emissions energy sources.

Chapter 2 | Energy for Al 81




Dispatchable sources of electricity generation, such as hydro, geothermal and nuclear, can
generally match hourly demand throughout the year, but this is not the case with variable
renewables. For example, where solar PV alone is procured to cover 100% of annual demand,
the share of hourly demand covered can average 35-45%. Effectively this means that on an
hourly basis, solar PV output is only able to meet 35-45% of data centre demand due to its
output profile. In the hours when the procured solar PV is above data centre demand, the
excess can be available to the grid and other consumers. In the hours when solar PV output
is below hourly data centre demand, the remaining demand must be met by other sources.
Again, this results in a physical electricity mix that differs from the procured, or “financial”,
electricity mix. The associated CO, emissions for the electricity supply to meet data centre
demand depend on the extent to which low-emissions sources cover data centre demand
and the emissions intensity of the grid electricity.

Figure 2.17 = Daily average electricity generation profiles of wind, solar PV
and battery storage to meet baseload demand in Virginia,
United States
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W Solar PV ® Wind onshore Battery Grid

IEA. CC BY 4.0.

Renewables, coupled with storage, can meet a flat demand profile

Note: The graphs depict four different use cases considering 1.5 GW of solar PV, wind or both, and a 1 GW
battery with 4 GWh of storage.

Hourly matching of the procured electricity supply to the data centre electricity demand is
an approach pursued by several large technology companies, but achieving this ambition
with variable renewables comes with challenges. Solar PV and wind generation are
inherently variable. Solar PV varies across the day and seasons. Wind production is less
variable on average but can vary quickly from hour to hour, with extended periods of low or
high generation. However, hybrid projects combining solar PV, wind and storage offer a
better match to baseload demand, with storage helping to smooth out variable output from
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renewables. Solar PV combined with battery storage has the advantage that it can be
deployed quickly and provides a more constant supply. Combining solar PV, wind and battery
storage results in an even flatter supply (see Figure 2.18). To align with baseload demand on
an hourly basis, the installed capacity of renewable sources must be higher than the average
demand.

In order to analyse the ability of solar PV, wind and battery storage to meet baseload
demand, a new analysis of over 1 000 use cases covering eight configurations in more than
100 regions was carried out. The regions include European countries, each state of the
United States and each province of China. Different procurement strategy configurations
were tested, resulting in different combinations of renewable and storage technologies. The
remaining portion of electricity demand not covered by renewable sources was assumed to
come from the grid at the average industry retail price. The analysis measures the hourly
matching of supply and demand, the average cost and the associated CO, emissions.

Figure 2.18 = Average cost of electricity consumed by component for different
portfolios and average CO2 emissions intensity in the
United States, 2025
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80% hourly matching low-emissions portfolios are comparable
in costs with annual volume matching projects in the United States.

Notes: MER = market exchange rate; Ind. = industrial; CCGT = combined-cycle gas turbine. Annual matching =
portfolio of wind and/or solar PV optimised to meet 100% of annual demand; 50% hourly matching = portfolio
of wind, solar PV and batteries to reach at least 50% hourly matching with demand; 80% hourly matching =
to reach at least 80% hourly matching with demand; 90% hourly matching = to reach at least 90% hourly
matching with demand; 99%+ hourly matching = to reach at least 99% hourly matching with demand.
Assumptions for the industry retail price of electricity are taken from 2023 historical data. Assumptions for
gas turbine costs are based on a natural gas price of USD 19/MWh and an 85% capacity factor for CCGT
technology with 60% efficiency. Assumptions for capital expenditures and operational expenditures for solar
PV, onshore and offshore wind, and battery storage are taken from IEA (2024) for the year 2025.
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In the “annual match” configuration where solar PV alone is procured to cover 100% of
annual demand, the share of hourly demand covered averages about 40% in the
United States in most locations (see Figure 2.18). Where onshore wind alone is procured,
hourly coverage averages almost 65% but ranges from 55% to 75% depending on the US state.
In Europe and China, solar PV alone covers an average of 40%, with a wide range across
countries and provinces, and wind alone covers similar shares to the United States. In China
the range across provinces is wider for wind alone, ranging from 40% to 80%.

We assessed the optimal sizing of solar PV, onshore wind and hybrid projects to minimise
costs while meeting annual electricity demand in volume (referred to as the “hybrid annual
matching” configuration). For hybrid projects that combine wind and solar PV to meet annual
electricity demand, the average hourly coverage share is 70%, with a range from 40% to 80%
across different states of the United States. In Europe, the share of demand covered by
renewables in the hybrid annual matching configuration averages 70% and ranges from 40%
to 85% in countries with the best renewable potential. In China, the annual matching
configuration for hybrid projects usually covers 65% of baseload demand, ranging from 40%
to almost 85% across provinces.

We also explored the cost optimal configuration of wind, solar PV, battery storage and
purchasing of grid electricity. The assessment is based on resource potential and grid
electricity costs, without specific constraints on volume or demand coverage. In this “cost
optimal” configuration, renewables cover an average of 50% of demand in the United States,
ranging from 25% to 70% in the most resource-rich states.

The last portfolios focused on the optimal sizing of wind, solar PV and battery storage
portfolios to achieve a specific target of hourly matching between renewables supply and
baseload demand. The analysis finds that ensuring 80% hourly matching of renewable
sources with baseload demand is comparable in cost to the annual matching configuration
in the United States, with the added benefit of guaranteeing 80% hourly matching with low-
emissions sources. This 80% guarantee configuration aligns with the grid retail price in the
United States at USD 80 per megawatt hour (MWh) (without including grid fixed costs like
connection charges). Achieving nearly full hourly matching with hybrid projects adds a
premium to overall costs, over 50% above the grid electricity price for industry in the case of
the United States, because of the required additional capacity in both supply and storage.
However, a higher share of hourly matching reduces exposure to electricity market price
volatility, protecting consumers from high prices.

Looking across regions, we find several similar results, including that 80% hourly matching
portfolios are comparable in cost and even more affordable than annual matching hybrid
projects. Annual matching hybrid projects can be more expensive because of their lack of
storage and greater reliance on grid electricity. In many countries in Europe and provinces in
China, the respective average costs of USD 100/MWh and USD 70/MWh for the “80% hourly
matching” configuration are below the 2023 average industry retail electricity price.
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The analysis also revealed several regional differences. In the cost optimal configuration for
Europe, the share of demand covered by wind, solar PV and battery averages 80%, which is
notably higher than for the United States due to a generally more expensive electricity price.
In China, the coverage share averages 70% and ranges between 30% and more than 90% in
some provinces in the most cost-effective case because of the lower investment costs
compared to the United States. When full hourly matching is the target, the cost premium in
China is 5% above the 2023 average grid cost. In Europe, 90% hourly matching can be
achieved for USD 105/MWh and 99% coverage for less than USD 150/MWh on average (see
Figure 2.19).

Figure 2.19 = Total cost of electricity per unit consumed for hybrid options of
wind, solar PV and battery in the United States, Europe and China
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Hybrid wind, solar PV and battery portfolios can meet 80% of baseload demand at an
average cost competitive with industry retail prices in the United States, Europe and China

Notes: MER = market exchange rate. Annual matching = portfolio of wind and solar PV optimised to meet
annual volume demand target; 80% hourly matching = portfolio of wind, solar PV and batteries to reach at
least 80% hourly matching with demand; 99%+ hourly matching = to reach at least 99% hourly matching with
demand. Each dot represents a different use case based on the renewable potential of various locations in the
United States, Europe and provinces in China. Assumptions for the industry retail price for electricity are taken
from the minimum and maximum values across historical data between 2014 and 2023 for each country in
Europe, US state and province of China. Assumptions for capital expenditures and operational expenditures
for solar PV, onshore and offshore wind, and battery storage are taken from IEA (2024) for the year 2025.

Constant baseload demand for data centres does not necessarily imply conventional
dispatchable power sources. As variable renewables are now cheaper and faster to deploy
in many regions compared to other technologies, pairing them with storage can increase
their alignment with baseload-type demand. Hybrid portfolios of wind, solar PV and storage
can cover a relatively high share of demand on an hourly basis at a competitive price. Aiming
for a very high share of hourly matching raises the costs, which can exceed the average
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industry retail price depending on the region. Compared with conventional annual matching
PPAs, hourly matching PPAs with a high share of low-emissions sources provide a higher
guarantee of covering electricity demand, reducing CO, emissions and mitigating the
volatility risk associated with electricity prices. The role of renewables should also be
analysed at the broader system level to better assess the balance of the variability.

2.5.3 Electricity supply in the Base Case

Global electricity generation to supply data centres is projected to grow from 460 TWh in
2024 to over 1 000 TWh in 2030 and 1 300 TWh in 2035 in the Base Case. Renewables meet
nearly half of the additional demand to 2030, followed by natural gas and coal, with nuclear
starting to play an increasingly important beyond 2030 (Figure 2.20).

Figure 2.20 = Global electricity generation for data centres and the associated
CO: emissions in the Base Case, 2020-2035

Electricity generation Emissions
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Between now and 2030, renewables meet nearly half of the increase in global data centre
electricity demand, followed closely by natural gas and coal-fired electricity generation

Coal, with a share of about 30%, is the largest source of electricity, though this varies
significantly by region, with the highest contribution found in China. Renewables — primarily
wind, solar PV and hydro — currently supply about 27% of the electricity consumed by data
centres globally. Natural gas is the third-largest source today, meeting 26% of the demand,
followed by nuclear with 15%. It should be noted that this analysis considers the fuel mix of
the electricity physically consumed by data centres (considering both onsite generation and
electricity received through the grid, taking into account the fuel mix of the local electricity
systems they are located in) rather than the contractual mix of different data centre
operators.
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Taken together, renewables remain the fastest-growing source of electricity for data centres,
with total generation increasing at an annual average rate of 22% between 2024 and 2030,
meeting nearly 50% of the growth in data centre electricity demand. This growth is primarily
driven by the rising deployment of wind and solar PV in power systems across the globe, with
some of the new capacity financed through PPAs with technology companies. Some data
centre operators also invest directly in co-located renewables. Even so, new demand from
data centres is a significant near-term driver of growth for natural gas-fired and coal-fired
generation, through both higher utilisation of existing assets and new power plants. Natural
gas and coal together are expected to meet over 40% of the additional electricity demand
from data centres until 2030. After 2030, SMRs enter the mix, providing a source of baseload
low-emissions electricity to data centre operators. Currently, hyperscalers are among the key
corporate backers of SMR development. Coupled with the ongoing growth of renewable
electricity generation, the resulting increase in nuclear electricity generation leads to an
absolute decline in coal-fired generation for data centre operations by 2035. Consequently,
CO, emissions from electricity generation for data centres peak at around 320 Mt CO; by
2030, before entering a shallow decline to around 300 Mt CO; by 2035. Despite rapid growth,
data centres remain a relatively small part of the overall power system, rising from about 1%
of global electricity generation today to 3% in 2030, accounting for less than 1% of total
global CO, emissions (see Chapter 5 for more details).

Regional outlook

The United States and China are by far the largest data centre markets today. In both
countries, most of the electricity consumed by data centres is produced from fossil fuels,
which also meet most of the increase to 2030. However, the rising deployment of
renewables, and later nuclear, is expected to slow the growth of fossil fuel power generation
after 2030.

With a share of over 40%, natural gas is currently the biggest source of electricity for data
centres in the United States, followed by renewables — mostly solar PV and wind — at 24%,
as well as nuclear and coal power with shares of around 20% and 15%, respectively. As
demand growth is particularly rapid over the next five years, natural gas is the largest source
of additional supply, adding over 130 TWh of annual generation until 2030. Utilities are
revising their integrated resource plans, with the construction of additional gas-fired power
plants planned across the country, some of them to support the increase in data centre loads
(see Box 2.6). Furthermore, some data centre operators are partnering with utilities and
energy companies to expand gas-fired capacity, some of it directly co-located with data
centres. Renewables are the second-largest source of additional electricity supply, adding
110 TWh to data centre electricity supply between 2024 and 2030. This is mainly due to the
continuing increase in the share of wind and solar PV in the electricity mix of most states, as
well as some data centre operators investing in co-located renewables.

Nuclear power plays a significant role in meeting data centre electricity demand in the
United States, particularly after 2030 when the first SMRs are expected to be commissioned.
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Technology companies have plans to finance more than 20 GW of SMRs to date, though
successful development of the technology could open up even larger opportunities. Together
with the ongoing increase in renewable electricity generation, the expansion of SMRs
reduces the need for additional natural gas-fired generation so that by 2035, low-emissions
sources account for over 55% of the US data centre electricity supply mix (Figure 2.21).
Beyond 2035, the addition of carbon capture to some natural gas-fired power plants is
expected to further boost the supply of low-emissions electricity to data centres.

Figure 2.21 = Electricity generation for data centres in the United States and
China in the Base Case, 2020-2035
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Natural gas is set to continue to dominate the near-term data centre
electricity supply in the United States, with coal predominant in China

In China, as data centres are located mostly in the east of the country, their electricity supply
is dominated by coal with a share of about 70%, followed by renewables with nearly 20%,
nuclear close to 10% and natural gas accounting for the remainder. Between 2024 and 2030
both coal and renewables — mostly solar PV and wind —add about 90 TWh to the data centre
electricity supply. The increase in renewables is supported by their rising share in the grid
electricity mix, provincial colocation mandates and policies to prioritise the construction of
data centres in renewables-rich western China. After 2030, the introduction of SMRs
significantly boosts the nuclear share of the data centre electricity mix. Between 2030 and
2035, the rise in renewables and nuclear pushes coal into decline. By 2035, both sources
together make up 60% of China’s data centre electricity supply (Figure 2.21).

In Europe, renewables and nuclear are set to supply most of the additional electricity
required, with their combined share rising to 85% by 2030. Japan and Korea together
account for about 5% of global data centre electricity demand today, a share they are
expected to retain to 2030. Renewables and nuclear are set to provide nearly 60% of the
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electricity consumed by data centres in 2030, up from 35% today. The rest of the world is
responsible for about 10% of total data centre electricity generation, with Southeast Asia
and India accounting for a significant portion of that. In both regions, coal remains a key pillar
of the data centre electricity supply, but renewables are projected to eclipse it by 2035.

Box 2.6 > How are utilities in the United States planning to meet additional
electricity demand?

Over the course of 2024, many US utilities revised their load growth projections,
anticipating a significant increase in electricity demand from data centres, manufacturing
and —to a lesser degree — electric vehicles and electric heating. They are seeking to meet
this additional demand primarily by building new natural gas-fired power plants and
expanding the capacity of low-emissions sources of electricity, most notably wind and
solar PV, as well as battery storage to facilitate the integration of variable renewables. In
its updated integrated resource plan for North Carolina, Duke Energy, for example, has
announced plans to build 7 GW of renewables capacity, 3.6 GW of natural gas-fired
capacity, 1.8 GW of pumped storage hydro and 1.1 GW of battery storage until 2035,
while Dominion Energy plans to add 21 GW of low-emissions power generation, including
1.3 GW of SMRs, as well as 5.9 GW of gas-fired capacity and 4.5 GW of battery storage
across Virginia and North Carolina until 2039.

Integrated resource plans are comprehensive, regularly updated plans that utilities
employ to outline their generation requirements over periods ranging from 5 to more
than 20 years, identifying the necessary resources to meet anticipated demand and
ensure reliable service while balancing economic, environmental and regulatory
constraints and objectives. They are essential for planning and are mandated by
regulatory authorities in 33 states.

As of Q4 2024, the integrated resource plans of the United States’ utilities call for the
installation of an additional 260 GW of wind and solar PV capacity until 2035, 20 GW less
than planned at the end of last year. Gas-fired capacity is set to grow by 84 GW over the
same period, 32 GW higher than planned at the end of 2023 (RMI, 2025). Utilities cite
grid constraints and low reserve margins in several systems, as well as the high reliability
needs of data centres, as primary reasons for the renewed dash for gas.

Modernising and expanding the grid to facilitate the integration of variable renewables
and ensure reliability is another key feature of many integrated resource plans. Grid
modernisation involves upgrading infrastructure, rolling out smart grid technologies and
enhancing cybersecurity measures. The goal is to manage electricity flows efficiently and
minimise the risk of outages.

In the Base Case, the growth in global data centre electricity consumption sees the
installation of over 320 GW of additional electricity generating capacity between 2024 and
2035, including around 45 GW of battery storage, nearly 80% of it in the United States and
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China. Renewables account for nearly two-thirds of this additional capacity. Natural gas-fired
capacity also grows, driven primarily by the expansion of natural gas plants to supply data
centres in the United States. Gas turbines could also be deployed as a backup power source
for large data centres receiving electricity from the grid (Box 2.7). More than half of the
additional gas-fired capacity is installed before 2030 to meet immediate electricity needs,
while after 2030, growth in nuclear picks up so that, together with renewables, low-
emissions sources cover all of the additional demand growth. Nearly 20 GW of new nuclear
capacity is commissioned between 2030 and 2035, mostly from SMRs in the United States

and China (Figure 2.22).

Figure 2.22 = Annual average data centre power supply capacity additions
by fuel and region in the Base Case, 2024-2030 and 2031-2035
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While renewables account for two-thirds of the additional data centre electricity supply
capacity, significant volumes of natural gas, coal and nuclear capacity are also added

Box 2.7 =~ Backup power for data centres

Backup power sources for data centres are critical in ensuring uninterrupted operations
during power outages. The primary technologies employed include batteries, diesel
generators, gas generators and gas turbines. For additional redundancy, data centre
operators also usually request a minimum of two lines to connect their facilities to the
electricity grid.

Battery-based uninterruptible power supply systems provide instantaneous power
during outages, thereby preventing operational disruptions. They frequently also offer
protection against power surges and voltage fluctuations. However, the duration of
power supply from these systems is typically limited, ranging from a few minutes to an
hour. The system is therefore usually only designed to bridge the time it takes for
alternative backup power sources to start up.
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Diesel generators can deliver sustained power for extended outages. Their reliability and
ability to handle substantial power loads are crucial for data centre operations. However,
diesel generators emit pollutants. Additionally, they generate significant noise and
require onsite storage of fuel, which can be a constraint in urban environments.

Gas generators provide a cleaner alternative to diesel, emitting fewer pollutants and
generally exhibiting higher fuel efficiency. However, they are dependent on a continuous
gas supply, which can be a vulnerability if the supply is disrupted. The initial capital
expenditure associated with gas generators is also higher compared with diesel
generators.

Gas turbines are another potential option. They offer a reliable and continuous power
source, essential for maintaining operations during prolonged outages. Gas turbines are
more efficient and less emissions-intensive than diesel generators. However, the initial
investment for gas turbines, which tend to be significantly larger than generators, is
substantial, and permitting burdens can be more significant. Their size and the need to
combine several units to achieve the necessary reliability required of a backup power
source make them suitable only for very large data centres. Just like gas generators, they
are reliant on an uninterrupted supply of gas. As start-up times are longer than for gas or
diesel engines (around one minute for aeroderivative turbines and five minutes for
single-shaft, utility-size gas turbines), the battery backup will need to be sized for longer
runtimes accordingly.

Each backup power technology must be evaluated according to the specific requirements
and constraints of the data centre, especially the specified availability levels. A
combination of different technologies can enhance the robustness and reliability of
backup systems. Section 2.6.3 looks at the possibility of leveraging backup power systems
for flexibility.

2.5.4 Electricity supply in the sensitivity cases

The sensitivity cases examine the uncertainties surrounding future electricity demand from
data centres and the implications for electricity generation over the next five to ten years.
Across all cases, renewables play a pivotal role in meeting the growing electricity demand.
However, fossil fuels remain important for meeting the near-term surge in demand up to
2030.

Across all cases, renewables meet most of the additional electricity demand from data
centres to 2035. In the High Efficiency Case and the Headwinds Case, global data centre-
related electricity generation grows more slowly than in the Base Case. In the High Efficiency
Case it rises to about 1 100 TWh by 2035, more than 15% lower than in the Base Case. In the
Headwinds Case it reaches 790 TWh, more than 40% lower than in the Base Case. In both of
these cases, renewables meet 55% or more of the increase in data centre electricity demand
to 2035, compared with around 50% in the Base Case, although in both cases, the increase
is smaller in absolute terms. In the Lift-Off Case, where global electricity generation
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associated with data centres surges to nearly 2 000 TWh by 2035, 45% higher than in the
Base Case, around 45% more renewable electricity generation is added between 2024 and
2035, but long grid connection queues mean that most of the additional increase beyond
that is met by fossil fuels.

Across the outlook period, fossil fuels, particularly coal and natural gas, remain crucial for
addressing potential demand spikes (2.24). In the Lift-Off Case, between 2024 and 2030,
nearly 50% of the additional electricity generated for data centres comes from fossil fuels.
Natural gas-fired power generation grows about 1.5 times faster than in the Base Case, with
the United States experiencing the most significant absolute increase. Similarly, coal-fired
generation grows twice as fast, with China contributing most of the additional generation.
For the period between 2024 and 2035, fossil fuels account for about 35% of the additional
electricity consumed by data centres globally. In the High Efficiency Case and the Headwinds
Case, fossil fuels respectively supply around 35% and 15% of the additional electricity, as
opposed to 28% in the Base Case. The share of fossil fuels in total electricity generation for
data centres in 2035 remains at about 40% across all cases.

Figure 2.23 = Electricity generation for data centres by fuel and case, 2035
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In all cases, fossil fuels remain an important element of the
data centre electricity supply mix by 2035

Note: High Eff. = High Efficiency.

The Base, High Efficiency and Lift-Off Cases all see an increase in the contribution of nuclear
power to the data centre electricity supply between 2030 and 2035, driven mainly by the
commissioning of SMRs in the United States and China, which together account for over 80%
of total global nuclear electricity generation for data centres. The share of nuclear in the data
centre electricity mix ranges between 16% and 18% in the Base, High Efficiency and Lift-Off
Cases. It is only in the Headwinds Case, with its less favourable environment for Al and data
centre operators, that these investments do not materialise, and nuclear electricity is
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sourced entirely from large-scale reactors connected to the grid, with the nuclear share
dropping to about 10% of the data centre electricity supply mix by 2035.

Figure 2.24 = CO: emissions associated with electricity generation for data
centres by case, 2030 and 2020-2035
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Data centre electricity supply-related CO2 emissions peak at 215 Mt CO2 to 320 Mt CO:z in
all cases except the Lift-Off Case, which sees a plateau at around 475 Mt CO: in the 2030s

In the Base, High Efficiency and Headwinds Cases, CO, emissions from electricity generation
for data centres peak around or before 2030. However, in the Lift-Off Case, which sees
significantly higher levels of fossil fuel-based electricity generation, they continue to increase
until the early 2030s, peaking at nearly 1.5 times the maximum emissions level of the Base
Case.

In the Headwinds Case, emissions peak earlier than in the Base Case, dropping to about
215 Mt CO; in 2030. This is primarily due to the lower data centre electricity demand growth.
In 2030, CO, emissions in the High Efficiency Case are around 265 Mt CO,, nearly 20% lower
than in the Base Case and roughly 55% of the CO, emissions of the Lift-Off Case.

2.6 Data centre interactions with the electricity grid

2.6.1 Is there a risk of delays in connecting data centres to the grid?

The global expansion of data centre capacity faces risks from grid connection delays,
particularly in regions experiencing high concentrations of demand growth. Connection
queues for new data centres can already be long in many key regions (Table 2.4). In recent
years, several jurisdictions have placed moratoriums on new data centres while system
operators process the backlog of connection requests and assess the capacity of the grid to
meet additional connections.
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Table 2.4 >
jurisdictions

Reported connection queues for new data centres in selected

Jurisdiction Average time in queue

United States

North Virginia (United States)
California (United States)
Germany

United Kingdom
Netherlands

Kanto (Japan)

Malaysia

Queensland (Australia)
Italy

Spain

Ireland

1-3 years

Up to 7 years

3 years

Up to 7 years

5-7 years

Up to 10 years
More than 5 years
Under 3 years
More than 2 years
Under 3 years
3-5years

In Dublin, paused until 2030

Sources: IEA analysis based on energy.gov (United States), datacenterdynamics.com (Virginia, Netherlands,
United Kingdom), electricalreview.co.uk (Germany), businesspost.ie (Ireland) and IEA survey results (Australia,
Italy, Japan, Malaysia, Spain).

Figure 2.25 = Transmission grid congestion costs and congestion volumes in
selected markets, 2019-2023
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Although congestion costs have come down due to decreasing natural gas prices,
congestion volumes have continued to increase

Notes: PJM is a regional transmission organisation on the east coast of the United States where congestion
costs have trended higher than the national average in recent years. Congestion volumes for the United States
and the Netherlands are not available.

Sources: IEA analysis based on Grid Strategies Transmission Congestion Report (for United States and PJM)
Grid Strategies (2024); German Federal Network Agency Monitoring Reports (German) Bundesnetzagentur
(2025); National Energy System Operator, Daily Balancing Services Use of System (BSUoS) Cost Data and
Constraint breakdown (Great Britain) NESO (n.d.); Tennet Annual Market Update 2023 (Netherlands) Tennet
(2024).
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https://www.businesspost.ie/news/no-new-data-centre-grid-connections-until-2030-eamon-ryan/

Processing grid connection applications more quickly can help reduce waiting times.
However, the problem is not solely bureaucratic: when power grids are congested, even
priority applications cannot be approved. As seen in Figure 2.25, grid congestion is becoming
worse in many countries. In Germany, the United States and Great Britain, the costs of
managing congestion tripled between 2019 and 2022. In the Netherlands, the costs
increased sixfold during the same period. In 2023, congestion costs went down because
natural gas became cheaper. However, data from Germany and Great Britain reveal that
physical grid congestion volumes have continued to increase year on year, highlighting the
growing pressure on existing infrastructure.

While grid congestion remains a significant challenge, it is not the only bottleneck hampering
connection applications. Suboptimal connection and queue management processes
contribute substantially to delays. For instance, Great Britain’s enormous connection queue
contains numerous generation projects that are not progressing, prompting reforms to
gueue management. Additionally, system operators often lack sufficient resources, and the
industry faces a shortage of skilled labour to deliver connections.

Figure 2.26 = Change in transformer backlog, transformer price index and grid
infrastructure lead times
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The supply chain for electricity grid equipment is showing signs of strain,
while transmission lines can take three to six years, or even longer, to build

Mitigating grid congestion is challenged by the long lead times for new transmission projects.
Building new transmission lines can take four to eight years in advanced economies and two
to fouryears in emerging economies. This is not just a problem of permitting and
construction; supply chains for grid equipment are also showing strain. Order backlogs for
transformers grew by more than 30% in 2024, after two years of growth above 15%.
Reflecting this, the price index for power transformers has increased by 1.5 times since 2020
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(Figure 2.26). Chapter 5 looks in more detail at the security implications of supply chains for
grid infrastructure.

To understand the extent to which data centres might face connection delays, we examined
the current congestion levels, grid policies and connection timelines. Based on a location-
specific analysis of upcoming data centres, we developed different scenarios for the possible
number of data centres that may be delayed in connecting to the grid. Our analysis reveals
that grid constraints could delay around 20% of the global data centre capacity planned for
construction by 2030. This raises the question of what can be done to ensure that data
centres come online in a timely way and that the electricity system does not create a critical
bottleneck in this regard.

Figure 2.27 = Global data centre capacity in the Base Case and capacity at
risk of connection delay due to grid constraints, 2025-2030
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Around one-fifth of global data centre buildout in the Base Case
is at risk of delay due to grid bottlenecks

2.6.2 Data centre locational flexibility

One critical option to avoid grid constraints is to locate data centres in places with adequate
grid and generation capacity. However, up until now, the dominant trend observed in the
siting of data centres has been for them to cluster around markets and within geographies
that have the requisite infrastructure, policy frameworks and workforces. As a result,
gigawatt-scale clusters have emerged in specific regions in North America, Europe and
Asia Pacific, in some cases creating issues for grid congestion. Concerns around power
availability and increasing prices have led utilities and policy makers to consider temporary
moratoriums on development, with notable examples implemented in cities like Amsterdam,
Dublin, Santa Clara in California and Singapore.
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While key siting parameters vary depending on the type of data centre, the general criteria
are reliable power supplies, competitive electricity prices, sufficient connection capacity and
access to land, in addition to access to the core broadband transmission network, skilled
construction and operation workforces, as well as favourable policy frameworks. Data
sovereignty is also an important consideration. The saturation of established data centre
markets is shifting development towards new geographies. Siting considerations also differ
between different kinds of data centre workloads. Al training and some kinds of inference
are less sensitive to latency than traditional workloads, creating the potential to site data
centres in locations with better access to grid and generation capacity but not necessarily
near data centre users.

However, the existing infrastructure, policy frameworks and talent pools that enabled the
top markets to flourish have created momentum that continues to draw development and
justify investment in the expansion of supporting infrastructure. As a result, more than 15%
of data centre capacity under development globally falls within the top ten largest data
centre markets by installed capacity, indicating the continued attractiveness of these hubs
(Figure 2.28). Northern Virginia in particular illustrates how the convergence of these factors
can lead to a boom in data centre development (Box 2.8).

Figure 2.28 = Top ten data centre markets by installed capacity versus share
of capacity under development, 2024
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Based on the pipeline of announced projects, 15% of global data centre capacity under
development is concentrated in the top 10 largest markets by installed capacity

Notes: The Pearl River Delta encompasses the combined capacity of Guangzhou, Shenzhen and Hong Kong,
China. The geographies considered represent the ten largest clusters in the world. Capacity under
development is based on announced projects.

Source: IEA analysis based on data from OMDIA (2025).
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There is some evidence of a shift in data centre locations in the United States, although
established hubs are attracting the majority of the capacity under development (Figure 2.29).
Las Vegas in Nevada and El Paso in Texas provide examples of this emerging trend. Together,
these locations have less than 500 MW of installed capacity today, but developers have
announced large-scale developments in both locations due to their affordable land, cheap
renewable power and tax incentives for data centre development. Nevertheless, half of the
capacity under development in the United States is being built in markets with over 1 GW of
installed capacity.

Figure 2.29 = Data centre hubs by installed capacity and capacity under
development in the continental United States, 2024
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under development in the United States is in markets with over 1 GW of installed capacity

Notes: We define a data centre cluster as a group of data centres located within 100 kilometres of each other.
The ten largest clusters have been named. Only future clusters greater than 500 MW are shown.

Source: IEA analysis based on data from OMDIA (2025).

Conversely, demand growth in saturated markets is being cited as justification for investment
to expand generation and transmission capacity. Building this capacity quickly enough to
meet the rapid growth projections poses a challenge. While electrical utilities have an
obligation to meet the demand within their service territories, they are not required to
provide service immediately upon request and may delay data centres’ grid connections until
enough generation and transmission capacity is available.
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Box 2.8 =~ Why does Northen Virginia dominate the data centre market?

Loudoun and Prince William Counties in Northern Virginia, both within the
Washington, DC metropolitan area, are together the world’s largest and fastest-growing
data centre market by far, with over 5 GW of installed capacity and more than 3 GW
under development. Installed capacity in the region — commonly referred to as “Data
Centre Alley” — has grown more than 500% over the past ten years (Magnum Economics,
2024).

The region’s rise is a recent development that illustrates the fast-moving dynamics of the
data centre market. The area only became the top market by installed capacity in 2016,
and installed capacity proceeded to grow 20% annually (Magnum Economics, 2024).
While the region’s central role in the early stages of the Internet’s development gave it a
head start as a key data centre hub, its growth can largely be attributed to the region’s
favourable policy environment, affordable power and highly skilled workforce.

Northern Virginia’s selection as one of the four original Network Access Points during the
commercialisation of the Internet in the 1990s led it to become a major intersection of
the fibre optic backbone network. Following the loss of a USD 1 billion data centre project
to neighbouring North Carolina in 2009, Virginia significantly expanded its tax exemption
for the sale and use of data centre equipment, and the Virginia General Assembly recently
extended these incentives to 2035. Streamlining the municipal government’s approval
process in co-ordination with electric utilities” proactive capacity planning has been
instrumental to accommodating the sector’s growth (JLARC, 2024).

Data centres’ long-term PPAs have supported the buildout of over 6 GW of solar power
capacity in the state, and their growing demand has been cited as a key motivation
behind the development of the Coastal Virginia Offshore Wind project, the largest
offshore wind project in the United States. The high concentration of data centres has
also supported the development of a highly skilled workforce with expertise in data
centre construction and operation. With over 500 colleges and universities in the
Mid-Atlantic region, including many of the world’s highest-ranked institutions, local
collaborations have emerged between data centre operators and academic institutions
to offer scholarships and align academic curricula with the evolving needs of data centre
operations.

While the jobs and tax revenue that data centres provide generally result in a positive
net impact for local communities, they are large industrial facilities that can significantly
affect their surroundings, and there is growing public opposition to further development
stemming from concerns about declining property values due to their visual impact as
well as the constant noise from cooling units and backup generators.
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2.6.3 Data centre operational flexibility

Data centres are emerging as major players in the energy system. In the United States, the
country with the largest buildout of data centres, their share of system-wide peak electricity
demand is set to increase from 6% today to 13% by 2030. As data centres take on a larger
role in electricity systems, ensuring their smart integration becomes critical, both to enhance
grid stability and support their continued deployment.

In capacity-constrained regions, connection queues have led data centre operators to
explore flexibility measures to shorten lead times for grid access. Grid congestion or
insufficient generating capacity restricts the addition of new loads, but such constraints
usually occur during a limited number of hours every year. In this context, electricity system
flexibility will be critical to cater for growing demand and integrate increasingly variable
sources of supply and demand. This section focuses on possible flexibility contributions from
data centres within broader efforts to enhance electricity system flexibility from storage,
other kinds of demand response, grids and dispatchable resources.

Figure 2.30 = Data centre capacity additions to 2035 and feasible integration
into the current electricity system under different flexibility cases

Feasible additions

with flexibility of:
0.1%

m0.5%

m1%

Base Case additions
to 2035

United States European Union China

IEA. CCBY 4.0.

Current electricity systems can already integrate all data centre additions to 2035 if a mix
of backup activation and workload management reduces grid demand 1% of the time

Note: Capacity additions are considered feasible if their operation does not increase system peak demand,
measured as the top 100 hours over ten years of weather conditions. Base Case additions include colocation,
service provider and hyperscale data centres.

Our analysis finds that if data centres are flexible for 0.1-1% of the time, there is enough
room in current electricity systems to integrate all new data centre capacities to 2035
(Figure 2.30). In the United States, up to 70 GW of new data centre capacity could be
integrated within the current system if operators reduce grid demand for just 1% of the time
—enough to cover all colocation, service provider and hyperscale additions in the Base Case.
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In China, data centre additions would need to be flexible for 0.2% of the time to fit within
the existing system capacity, the equivalent of 20 hours per year on average.? Other studies
find similar headroom in existing electricity systems, with flexibility rates below 1% (Nicholas
Institute for Energy, Environment & Sustainability, 2025).

These episodes of grid stress would be short, lasting between three to five hours on average.
They align with existing peak periods, occurring for a few hours in the evening or during the
day, usually prompted by regional heat or cold waves. Even during these episodes of stress
on the electricity system, the grid can still supply some electricity to the data centre. In 80%
of the hours of grid stress, more than half of the usual grid electricity supply to the data
centre would still be available. In 50% of these hours, around four-fifths of the grid capacity
would be available. In other words, even if the data centre is flexible for 1% of the hours of
the year, only 0.3% of its total grid electricity consumption would need to be actively
managed.

Although needed for only a limited number of hours each year, providing this degree of
flexibility would still require solutions not developed at scale today. These include higher
utilisation of onsite generation, the installation of additional batteries and the management
of computational workloads.

In this context, there is a growing focus on understanding the potential for data centre
flexibility. In 2024, the Electric Power Research Institute launched the DCFlex initiative to
develop large-scale flexibility hubs, demonstrating innovative grid integration strategies for
data centres. The initiative fosters strategic collaboration between utilities, data centre
operators and policy makers. Earlier that year, the US Department of Energy published
recommendations on powering data centres, advocating the development of a flexibility
taxonomy and framework to explore financial incentives and policy changes that could drive
more flexible operations. In the European Union, data centres fall under the scope of the
Energy Performance of Buildings Directive, which mandates the installation of building
automation and control systems. This requirement aims to enhance grid compatibility,
enabling data centres to better respond to external grid signals and support flexibility
markets.

Several strategies exist to develop data centre flexibility (Table 2.5). While some of these
imply additional investment, recent surveys indicate that most hyperscalers and data centre
developers are willing to pay more if they can access grid capacity faster.

Onsite batteries are a relevant flexibility option given the short duration of stress events.
Batteries do not need to match the full capacity of the data centre; in most stress hours,
more than half of the grid capacity remains available to the facility. The trade-off between
battery cost and the facilitated grid connection could be improved if batteries are also
operated for arbitrage in electricity markets. However, developers note that revenues from

3 This analysis does not mean that grid reinforcement or new peak capacities are unnecessary to meet
medium-term growth but rather shows how flexible loads can tap the existing potential and reduce connection
times.
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flexibility services remain modest compared to the overall operating costs (though faster grid
access can help avoid high opportunity costs).

Table 2.5 =~ Options for data centre flexibility

Category Description Example

Onsite Balancing energy supply during peak e Google installed onsite batteries

batteries demand and providing backup power (2.75 MW/5.5 MWh) at its data centre campus
to the data centre. Batteries can also in Belgium.

contribute to grid stability. e A Microsoft data centre in Dublin employs

batteries as part of its uninterruptible power
supply system to provide backup power and
assist in balancing grid frequency.

Backup Running backup generators during grid e Enchanted Rock is developing a natural gas
generation stress events to reduce reliance on the plant for a Microsoft data centre in California.
grid.

e American Electric Power secured an
agreement to purchase up to 1 GW of Bloom
Energy’s solid oxide fuel cells.*

Cooling Adjusting cooling load temporarily to o CIV France in Lille utilises a 50 m® ice storage
optimise energy use, including using system, equivalent to a 700 kW chiller, capable
“cold batteries”, such as thermal of operating for 30 minutes.
storage.

e The Tidel Park facility in India employs ice-
based energy storage to manage its cooling

load
Workload Shifting computational tasks to times e Google deployed a “carbon-aware”
temporal of lower grid demand or higher scheduling system to shift workloads to times
management  renewable generation availability. when renewable energy is abundant.
Workload Moving computing tasks between e Google is piloting programmes to dynamically
spatial geographically distributed data centres shift workloads to locations with cleaner
management  to optimise energy costs, availability energy sources.

and sustainability.

* In this use case, fuel cells are purchased as a power source to run as base load. Other fuel cell configurations
could provide flexibility.

Note: GW = gigawatt; kW = kilowatt; MW = megawatt; MWh = megawatt hour; m? = cubic metre.

Backup generation is typically already installed to cover grid outages. If utilised for flexibility
purposes, runtimes would increase and data centres should prioritise low-emissions fuels,
such as biofuels, natural or renewable gas, or low-emissions technologies such as fuel cells.
However, this requires addressing complex challenges related to fuel availability and storage.
While backup generators could offer a convenient flexibility solution, they are not designed
to function as power plants and are usually subject to regulations regarding noise and air
pollution. Currently, backup power is likely to provide only limited scope to increase data
centre flexibility.

Cooling accounts for between 10% and 30% of a data centre’s load. When paired with
thermal storage that has a few hours of capacity, the data centre can reduce its real-time
consumption for cooling and shift it to off-peak hours.
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Additionally, workloads can be shifted over time and across data centres. Virtualisation
allows scheduling based on grid conditions, prioritising times or locations with lower
congestion. This flexibility is particularly beneficial for Al training and some kinds of Al
inference that are not sensitive to latency. However, any such scheduling needs to balance
the financial goal of maximising GPU utilisation rates (Box 2.9). This flexibility option does
not apply equally across all data centres, with those hosting third-party applications having
lower control over their workloads.

Such workload management strategies are still in their infancy, but the industry does have
some experience with analogous practices. For example, when they face low utilisation rates,
Microsoft, Amazon and Google offer spare capacity at discounts of up to 90%, in exchange
for the flexibility of interruptibility without notice. Shifting workloads across European data
centres increases video call latency by only 10%, a negligible impact for most applications
(Kelly, et al., 2016). Moreover, studies suggest that 30-50% of workloads are delay tolerant,
a figure likely to rise with the uptake of Al training and inference (BNEF, 2021).

Figure 2.31 = Technical daily flexibility potential from data centres,
2030 and 2035
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Data centres could provide up to 50 GW of flexible capacity by 2035 by combining
spatial and temporal workload shifting with cooling load management

Note: EMDE = emerging market and developing economies.

In addition to providing peak shaving services, in the future, data centres may be able to
provide more frequent flexibility services to support the integration of variable renewables,
for example. Our analysis finds that around 50 GW of data centre capacity could have the
potential for flexibility by 2035, assuming that 25% of accelerated workloads could be
spatially or temporally shifted during daily demand peaks, and 10% of conventional
workloads (Figure 2.31). One-third of the flexible capacity would come from the scheduling
of workloads on accelerated servers. Cooling contributes to around 25 GW of flexibility, and
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its share decreases over time as PUE ratios improve. In advanced economies in 2030, data
centre flexibility potential is equivalent to the average charging load from the electric car
fleet. Incentivising data centre flexibility can contribute to both system security and
renewables integration.

Policy makers need to develop innovative frameworks to incentivise flexibility. While the
value of these strategies for data centre developers lies in accessing capacity more quickly,
clear rules on engagement are necessary for participation in flexibility programmes. Further
developing data centre flexibility requires stronger integration between grid operators and
data centres, including early communication on upcoming stress events and proactive
workload planning, particularly for tasks like Al training. Developing a playbook to incentivise
more flexibility from data centres will require a better understanding of the economic,
operational and contractual constraints that data centres face (Box 2.9).

Box 2.9 = How much does flexibility cost for accelerated servers?

Al workloads may not be as constrained by latency issues as traditional workloads, and
some Al workloads can be scheduled in advance (for instance, Al training). However, they
run on accelerated servers that are very capital intensive — investment costs can reach
USD 30 000/kW, around ten times higher than an aluminium smelter and 50 times higher
than an air conditioner. Data centre operators are therefore incentivised to maximise
their server utilisation rate and run their servers at near-full capacity whenever possible.
In this context, any curtailment of workloads carries an opportunity cost, as it would
reduce overall utilisation.

While the utilisation rate of accelerated servers is much higher than conventional servers,
reaching around 90%, some capacity remains unused. Where spare capacity already
exists, the headroom could present an opportunity to redistribute workloads across time
and space at no additional opportunity cost. However, specifically overbuilding the
capacity of accelerated servers in order to offer flexibility services would have high
additional costs. Given the high cost of accelerated servers, we estimate that
overbuilding data centre capacity and rescheduling workloads would entail an additional
cost of approximately USD 700/MWh of energy consumption shifted (Figure 2.32).

While this cost is prohibitive for daily electricity market arbitrage, it aligns with the
economics of specific flexibility events in certain markets. For example, in Texas,
electricity prices have consistently exceeded USD 700/MWh at some point in each of the
past seven years, with more than 50 hours higher than this threshold in most years.

A comparable investment in battery storage designed for similar flexibility events —
operating for around 50 hours annually — would incur similar capital costs per unit of
energy shifted. However, batteries typically cycle more frequently, for instance aligning
with solar PV generation patterns. Assuming around 300 cycles per year, the effective
cost per MWh falls below USD 100.
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From a theoretical economic perspective, the feasibility of data centre operational
flexibility depends on the actual opportunity cost of changing the utilisation patterns of
extremely capital-intensive equipment. However, there are additional operational and
contractual constraints, such as the need to reserve capacity for unpredictable but
already contracted workloads.

Figure 2.32 = Flexibility activation cost of selected technologies and
electricity prices in Texas

Flexibility activation cost 50 highest hourly electricity prices in Texas

USD per MWh
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Shifting accelerated server workloads can range from being cost-free to incurring
high opportunity costs, comparable to flexibility events in certain markets

Notes: The low and high opportunity costs of accelerated servers reflect, respectively, the spare capacity
and the need for additional investment to create sufficient headroom. Battery low and high costs are
computed, respectively, for 300 and 50 cycles a year. Electricity prices are for the Texas, Houston area.

2.6.4 Optimising interactions with power system operators and planners

Mitigating congestion and the long connection queues in some regions, as discussed
previously, requires an understanding of the interactions between data centres and system
operators. Data centres engage with system operators and planners throughout deployment
and operation, starting with grid connection applications. Key considerations for grid
operators include infrastructure upgrade cost recovery and allocation. Once operational, the
interactions of data centres with the grid and their potential impacts on its stability become
essential (Box 2.10).

Grid connection applications and waiting queues

Several solutions can reduce waiting times in grid connection queues, with clarifying the
connection pipeline being a critical approach. Amid uncertainty on connection timelines,
some data centres submit duplicate and speculative connection requests, artificially inflating
gueue lengths. The situation is compounded by the scarcity of grid capacity and lack of clear
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connection timelines at a time when an increasing number of connection requests are being
made by various other projects, such as renewables and batteries.

In some regions, waiting periods for data centre connection have extended to a decade.
While viable projects risk delays as a result, grid operators also risk overbuilding capacity for
projects that may never materialise. Implementing stronger verification requirements,
milestone-based progression systems and improved application tracking would help
operators identify duplications. This approach would provide planners with a more accurate
assessment of genuine demand, reducing pressure to build for theoretical peak loads that
substantially exceed realistic needs. By requiring more substantive evidence of commitment,
operators can establish a more efficient connection pipeline that properly aligns with actual
growth patterns. A structured capacity commitment framework can achieve this by requiring
long-term contracts between data centre projects and utilities, payments for a minimum
percentage of contracted capacity and financial assurances. Contracts can include provisions
for phased capacity ramp-ups, cost-recovery mechanisms and penalties for early termination
or significant capacity reductions (American Electric Power, 2025).

Transmission system operators can also alleviate the issue of large connection queues due
to limited grid capacity by implementing incentive structures that encourage data centres to
be built in areas without grid congestion. Transparency between grid operators and
prospective customers plays a critical role in grid optimisation, such as providing maps to
visualise the hosting capacity of transmission lines for large loads to identify the most
favourable connection point. Optimising the location of data centres is described in
section 2.6.2.

System planners plan for grid investments according to comprehensive electricity load
forecasts. In a situation where various data centre projects in the connection queue do not
materialise due to speculative and duplicate applications, the planners may be at risk of
overestimating demand and overbuilding capacity, incurring additional costs. The
European Union Agency for the Cooperation of Energy Regulators reported in their 2024
Monitoring Report (ACER, 2024), for a general case, that a 10% overestimation of demand
leads to a 10% rise in total grid costs. At the same time, such costs could be highly location
specific. If the predicted data centre load does not materialise, the costs and risks of these
grid investments are often socialised across other ratepayers. The way that these costs are
managed can have distributive impacts if costs are recuperated through increased utility bills
for all customers in an area, including residents and small businesses, disproportionally
affecting low-income households.

Typically, when a transmission system operator connects a data centre to the grid, the data
centre pays for the high-voltage line to make the connection. If infrastructure upgrades are
needed within the broader grid to manage increased electricity demand, grid operators in
Western Europe and the United States usually recover these costs through electricity tariffs
applied to all customers (ENTSO-E, 2022; CRS, 2023). However, US regulators are shifting
towards data centres bearing more of the upgrade costs directly (Utility Dive, 2024). Once a
capacity request is accepted, that capacity is contractually reserved for the customer and
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cannot be sold to new customers, even if it is unused (Mytton, et al., 2023). In areas with
limited grid capacity, unused reserved power for data centres can restrict availability for
other projects, contributing to longer connection waiting times.

Box 2.10 > Potential technical impacts of data centres on grids during

operation

There have been reports that data centres may affect power quality on the grid.
According to a survey conducted by the Electric Power Research Institute, utilities,
primarily in North America, have experienced operational impacts from existing data
centres (EPRI, 2024). Among the 23 respondents, the reported issues included thermal
violations (22%), voltage violations (17%), harmonic concerns (9%), fault ride-through
issues (9%), ramp rate issues (26%) and rapid variations causing forced oscillations (4%).
Two utilities reported experiencing harmonic concerns, thermal violations, voltage
violations and ramp rate issues, while two others reported both thermal violations and
voltage violations. The phenomenon of data centres possibly being associated with
harmonic distortion is also mentioned in various other sources (Bloomberg, 2024).

In addition to the above-mentioned impacts, the potential for data centre load loss can
be a challenge for power grid operators and planners, especially as data centre power
capacities become larger. A power grid disturbance may prompt a data centre to switch
to backup power (employing an uninterruptible power supply, for example), which
removes a large amount of load from the grid. This may in turn cause changes in the grid
voltage or frequency, which may be exacerbated if multiple data centres shift load
simultaneously. This essentially initiates a short feedback loop whereby a grid
disturbance prompts a reaction from a data centre, which in turn results in another grid
disturbance. In an incident review, the North American Electric Reliability Corporation
documented the impact of simultaneous data centre load loss following a fault on a
transmission line in the Eastern Interconnection (NERC, 2025).

The reconnection of large data centre loads also poses potential risks to system stability
if not managed in a controlled manner. Balancing authorities and transmission system
operators face significant challenges in maintaining system balance during these
reconnections, as ramp rates for load are just as critical as those for generation. Reliability
risks associated with the voltage ride-through characteristics of data centre loads are
particularly important, though this is not unique to data centres and is also relevant for
other large loads.

Al workloads potentially present unique challenges for power grid operators due to their
distinct characteristics at different operational stages: training and inference. Training
demands high GPU utilisation, leading to sustained high power consumption with
periodic surges and dips from data loading, preprocessing and checkpointing. Inference,
while generally less power intensive, can cause rapid fluctuations in demand based on
user interactions and external events. Installing onsite power-smoothing technologies is
a relevant option to cope with these challenges (Li, et al., 2024).
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Chapter 3

Al for energy optimisation
Applications in foday’s energy system

SUMMARY

® The energy system is complex and evolving. It is becoming increasingly electrified,
digitalised, connected and decentralised, with mounting cost pressures. These drivers
have encouraged energy companies to deploy applications that utilise artificial
intelligence (Al) to optimise systems, improve production, reduce costs, raise
efficiency, cut emissions and enhance safety. In this chapter, we estimate the sector-
wide impacts of known Al applications on a range of optimisations in a Widespread
Adoption Case, to explore the impacts of optimistic uptake of Al in the energy sector.

e Qil and gas companies have been among the earliest adopters of new technologies to
boost exploration and production. The number of supercomputers deployed in the
sector has doubled since 2010 and total computing capacity has grown at almost 70%
annually. In the Widespread Adoption Case, Al could reduce costs in oilfield
development and operations, potentially improving the affordability of fuels, but it
could also have broader ramifications, including increased emissions.

® Al could also have a major impact in electricity systems owing to the complexity of
supply, transmission and demand profiles. In the Widespread Adoption Case, the
application of Al in power plant operations and maintenance yields potential cost
savings of up to USD 110 billion annually by 2035 from avoided fuels and lower costs.
Al also enables greater integration of renewable electricity into the grid.

e The applications of Al in end-use sectors are varied but have significant potential. In
industry, Al is being used to optimise production processes. In the Widespread
Adoption Case, energy savings of around 8% could be achieved by 2035 in light
industry, such as the manufacturing of electronics or machinery. Al in transport can
enhance vehicle operation and management, which could cut energy consumption by
up to 20%; it also has applications in reducing contrails and improving electric vehicle
ranges. In buildings, the potential is limited by the rate of digitalisation, but there are
compelling illustrations of impact, such as on efficiency and demand response.

® Accurate weather forecasts and analysis of changing weather patterns in a warming
world are essential to optimise the operation, planning and resilience of energy
systems. Al has been improving the accuracy of weather forecasts and also reducing
computational demand.

e The adoption of such Al applications at a sector-wide level, however, is not a given.
Various barriers are limiting the extent to which existing Al applications can be
implemented, hindering the pace of change. These include unfavourable regulation,
lack of access to data, inaccessibility, interoperability concerns, critical gaps in skills,
the paucity of digital infrastructure and, in some cases, a general resistance to change.
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3.1 Introduction

Artificial intelligence (Al) is being deployed across various parts of the global energy system,
where Al applications are suited to meeting a wide variety of objectives, including cutting
costs, integrating a growing share of variable renewables, making systems more efficient,
enhancing fuel supply, ensuring timely maintenance of infrastructure and reducing
emissions. This chapter focuses on where Al is being used, and could be used, to optimise or
accelerate the deployment of existing technologies and processes used in the energy system.
Chapter 4 examines the use of Al in the innovation process for novel technologies.

The energy system is highly complex, with multiple sources of energy following a web of
flows and transformations to many end-uses. Al thrives on complexity like this, identifying
patterns that can be leveraged to improve efficiencies. It is already having an impact on the
energy sector but only in a limited, nascent way. Alongside greater electrification and
digitalisation, Al is well placed to support a more resilient, affordable and sustainable energy
future.

Figure 3.1 = Energy supply, transformation and end-use, 2024
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The global energy system is large and complex; fossil fuels still dominate primary energy
supply, but their share is set to decline, while in end-uses the role of electricity is growing

The energy system can be understood in three broad parts:

®  Primary energy supply includes the extraction or mining of energy resources.

B Transformation and transmission refers to the processing of primary energy sources
into appropriate forms, such as the generation of electricity or the refining of crude oil,
together with their transportation to consumers.
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B End-use consumption represents the final consumption of energy for a desired outcome
by consumers, such as to run a vehicle, heat something in a factory or cool a building.
We categorise the end-use sectors as industry, transport, buildings and other.

Within each of these stages lie many applications, processes and techniques, each with its
own set of challenges and opportunities for greater efficiency, security and sustainability.

In this chapter, we explore Al applications for energy resources (oil and gas, and mineral
mining), electricity generation networks, and the end-use sectors of industry, transport and
buildings. The chapter also discusses Al applications in weather forecasting and climate
science and adopts a novel approach to understanding the broader sector-wide impacts of
Al towards a wide range of optimisations. This approach is discussed in Box 3.1.

Box 3.1 > Methodology adopted to assess Al's impact on the energy sector

Many of the desired goals of Al's application in the energy sector — such as cost
reductions, enhanced reliability and improved resilience — are challenging to quantify at
a broader sectoral level, beyond the confines of individual case studies. It is also
challenging to predict the nature, adoption and impact of Al applications that might
emerge in the future.

Given these limitations, this chapter introduces a new Widespread Adoption Case, which
explores the impact that known Al applications could have at the sectoral level by 2035,
assuming the widespread adoption of the application or technology. This case hinges on
three considerations:

B The Widespread Adoption Case considers only existing Al-led interventions informed
by real-world case studies that can be scaled to the sectoral level.

B It assumes that many of the existing barriers to the sector-wide adoption of these
Al-led interventions (such as limited data availability and a lack of interoperability
standards) are overcome.

B It stops short of considering the full theoretical potential of Al-led interventions, as
it factors in certain insurmountable structural issues that would block their complete
adoption. For example, we consider variations in adoption by region by factoring in
the availability of enabling digital infrastructure.

Importantly, it is not a given that the Widespread Adoption Case will be achieved. Existing
barriers, such as constraints on access to data and a lack of digital infrastructure and skills
(discussed further in section 3.7), will continue to prevent widespread adoption in the
absence of regulatory changes and incentives. Therefore, the Widespread Adoption Case
is an ambitious pathway for the uptake of existing Al applications.

Note also that for the purpose of this analysis, we do not consider the impact of rebound
effects. This issue is discussed further in Chapter 5, section 5.8. We also do not consider
futuristic applications or interventions of Al in the sector, as their impacts are unknown.
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3.2 Therole of Al in the energy system

The energy sector is in a constant state of flux. The energy system is currently seeing rapid
change that creates new challenges and opportunities — many of which are well suited to Al
applications. The key trends in the energy sector include:

B Rising electrification: The overall share of total final energy consumption met by
electricity has been steadily rising and is projected to accelerate.

B Growing digitalisation: Energy systems are becoming more digitalised and integrated
through the proliferation of connected devices and appliances, electric vehicles (EVs),
smart meters, and smart sensors in industrial and commercial applications.

®  Rising complexity: The evolution of the energy system is resulting in greater complexity
in supply, demand and energy flow patterns. On the supply side, electricity generation
from variable sources, such as wind and solar, is growing fast. Generation is also
becoming more distributed as smaller and more dispersed generation sources, such as
rooftop solar, grow. On the consumption side, the number of connected appliances,
vehicles and industrial facilities has been increasing. The result is a rise in the number of
elements to manage both on the supply side and the demand side (Figure 3.2).

B Pressure on costs: The last few years have been challenging for energy consumers
around the world, with high energy prices putting significant pressure on the cost of
living. With new entrants in the market on both the supply and end-use sides, the energy
sector has also become more competitive. These factors have been placing pressure on
corporate finances, encouraging companies to find new ways to increase efficiencies
and reduce costs.

In addition to these structural trends, the energy sector is subject to several important policy
objectives. International targets aim to make the energy sector more efficient and
sustainable. The energy sector is the largest source of greenhouse gas emissions, which cause
climate change. Energy sector emissions have continued to rise, reaching 37.8 gigatonnes of
carbon dioxide (Gt CO,) in 2024 — the hottest year on record (with 2023 the second hottest).
Energy also needs to be reliable, affordable, secure and resilient. These imperatives have
been cast into sharp focus by the energy market turmoil of recent years.

Al can help advance progress on these critical challenges, but its successful deployment is
likely to depend on several key criteria. Typically, for Al applications to be deployed, they
require the availability of digital infrastructure and skills. Widespread use of sensors,
analytics and control systems allows for the collection of the extensive datasets that Al
needs, with increased scope for automation. Where advanced software systems are already
in place, Al capabilities can be rapidly deployed — but this is often inconsistent with the slow
turnover of capital equipment in the energy sector.

The deployment of Al to solve energy challenges will also depend in part on the alignment of
incentives. Uptake is likely to be strongest where the use of Al is in line with motives like
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finding or harnessing more resources, reducing operational costs, cutting emissions,
increasing resilience and boosting safety.

Figure 3.2 > Shares of renewable power and electrification, and number of
connected devices
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The energy system is electrifying and becoming more complex as renewable sources
grow; the number of connected devices is set to double from 2024 to 2030

Notes: Wind and solar show the share of global power generation; electrification shows the share of total final
energy consumption that comprises electricity; pathway based on a scenario guided by today’s policy settings.
Connected devices shows the global stock of network-connected automation appliances.

Source: IEA 4E EDNA Total Energy Model V2.0 for Connected Devices (right graph).

The technological capabilities of Al continue to evolve. Currently, applications excel at
learning from large and complex systems and applying their learnings to improve those
systems (such as finding new resources) or enhance the control of them (such as daily
operations). The system-wide, holistic aspect of these strengths suggests that Al applications
will be most beneficial where implemented at scale, for example in interconnected power
grids, large industrial facilities and commercial buildings. By contrast, for smaller, older assets
with limited digital connections — such as many individual vehicles or residential homes —the
role of Al may be more indirect or limited.

The range of potential applications of Al in the energy sector as surveyed in this chapter is
broad (Table 3.1). At the simplest level, these applications can be summarised into two types:
those that help to identify resources and design, plan and build facilities, and those that help
to optimise, refine and automate the operation of energy systems. These can be applicable
across the broad sweep of the energy sector — from identifying and harnessing resources,
including fossil fuels and critical minerals for energy technologies, to the generation,
transmission and distribution of electrical power and the use of energy in the buildings,
industry and transport sectors. Indeed, many applications of Al have the potential to be
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deployed across multiple sectors: for example, Al-enhanced digital twins or predictive
maintenance can help optimise the design and operation of oil and gas platforms, large
power plants and major industrial facilities. Al can also enhance the capabilities and accuracy
of climate and weather science, yielding further potential energy sector benefits.

Table 3.1 > Al applications for energy optimisation and their applicability

by sector
Oil and Critical . o
Category I .“ Power Grids Industry  Transport  Buildings
gas minerals
Resource
management ® n.a. n.a. n.a.

Applications related to the assessment, characterisation and extraction of resources,
including fossil fuels, critical minerals, renewables (e.g. wind, solar, hydro and
geothermal) and CCUS.

Design and . . .

development

Applications related to the design, planning, development and construction of assets
to extract, harness, transform and transport resources, and assets that are end-users
of energy.

Operational . . . . . .

optimisation

Applications that enhance the efficiency and output of a process (or set of processes)
related to the extraction, generation, transformation and transport of energy, or in
end-use sectors.

Automation and .

n.a.
autonomy

Applications that remove significant elements of human interaction within a system or
process.

Legend: n.a. = not applicable; @ = limited relevance; = moderate relevance; @ = highly applicable

Note: CCUS = carbon capture, utilisation and storage.

The rest of this chapter explores existing applications of Al across key parts of the energy
system and their potential within each sector.

3.3 Al for energy and minerals supply

The extraction and supply of fossil fuels, nuclear fuel and the critical minerals needed for the
components of energy equipment are the bedrock of the energy system. In this section, we
explore the application of Al in optimising processes in the oil, gas and mineral extraction
sectors.

Digitalisation in the oil and gas sector has progressed rapidly in recent years. Oil and gas
companies were among the earliest adopters of supercomputers to boost prospects for oil
and natural gas exploration and reduce costs. Mining companies have increasingly developed
digital technologies in recent years. The growth of Al opens up the potential to expand on
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this, helping companies to explore and identify additional volumes of oil, gas and minerals
and plan their development, reduce costs, improve safety and reduce environmental impacts
(Figure 3.3).

3.3.1 Al for oil and gas supply

The oil and gas industry has been a technology pioneer for more than 150 years and is now
a complex global industry that can overcome large geological and engineering challenges.
Continued investment in oil and gas supply will remain an essential element of energy
transitions, even if demand were to decline in line with climate goals. This is because natural
declines in oil and gas production from existing sources of supply are generally much sharper
than declines in demand (a detailed discussion on this is provided in the IEA report, The Oil
and Gas Industry in Net Zero Transitions (IEA, 2023)). Al applications in oil and gas supply can
therefore help play a role in energy transitions by ensuring that sufficient supplies are
available at lower cost and with lower emissions (Table 3.2).

Table 3.2 > Applications of Al in the oil and gas sector

Application Description Impact on energy Example

Resource management

Exploration and More reliable resource @ High: Reduced costs; Subsurface data
development evaluation; reduced faster development processing; reservoir
predrilling uncertainty times simulation

Operational optimisation

Operations and Optimising and @ High: Lower costs; Remote operations;
safety automating production greater reliability and predictive maintenance;
and processes; resiliency through regulatory compliance
leveraging digitalised simplified supply
set-ups chains; safer working
conditions; fewer
failures and

environmental impacts

Emissions reduction  Better identify and @ High: More robust Leak detection and repair
mitigate leaks, both supply through automation and
existing and at-risk improved leak prediction; sensor data
detection, repair and integration

prevention; long-term
carbon storage
certainty

In 2000, 11 supercomputers operated by oil and gas companies ranked among the world’s
500 fastest. By 2024, this number had increased to 24, and total computing capacity has
grown at almost 70% annually, outpacing the broader supercomputing industry. Companies
including TotalEnergies, Petrobras and Saudi Aramco recently announced that they were
developing new supercomputer capabilities for applications across exploration and
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production, operations and safety, and emissions management; ENI’s latest supercomputer
is currently the fifth fastest in the world.

Oil and gas companies are also investing and partnering with Al experts to develop bespoke
tools for their industry. For example, bp Ventures has made several investments in Al
companies providing geological services since 2017, and ADNOC announced the completion
of a 90-day trial of an Al agent based on a 70-billion-parameter large language model that it
indicated improved the accuracy of seismic processing by 70%, along with other
improvements (JPE, 2025). The Society of Petroleum Engineers, in collaboration with Aramco
for financing, is delivering its catalogue of books and papers to a large language model, which
will be commercially available in the near future.

Exploration and development

An essential part of exploring for and developing a new oil and gas deposit is characterising
the subsurface by acquiring, processing and interpreting the results from seismic surveys.
This is a data-intensive exercise —in the United Kingdom alone, the National Data Repository
contains more than 130 terabytes (TB) of data from over 5 000 seismic surveys and other
sources. The use of Al in seismic processing improves interpretation and image quality and
makes it up to 90% better at classification (Araya-Polo, et al., 2017). After deciding to develop
a project, companies need to decide where precisely to drill production wells, and this
involves the collection of additional data from well logs and other images. The synthesis and
interpretation of these datasets are increasingly being assisted by digital tools, such as
machine learning, to help assess where the oil and gas may be present in sufficiently large
accumulations.

Successful operations rely on simulating the behaviour of rocks and fluids during oil and gas
production. Reservoir simulation models now use 2 TB to 10 TB of data and require systems
capable of 100 teraflops to 1 000 teraflops of processing speed. Al can significantly enhance
the accuracy and speed of these processes. The use of deep learning algorithms has allowed
faster loading and processing of large volumes of data from multiple sources, including well
logs, seismic data and production information, which are entered into simulation models.
Physics-informed machine learning has enhanced the ability to model more complex
reservoir behaviour (Anson, 2024). For example, Chevron combines field data with physics-
based models and machine learning to predict well performance and production forecasts
more accurately (JPT, 2022). This allows geological models of hydrocarbon reservoirs to be
created in hours rather than months.

Operations and safety

Production forecasting is a critical component of the oil and gas industry, enabling companies
to optimise operations and manage resources effectively. Traditional methods have been
ever-present in the computational requirements of the industry, and they rely on many
assumptions and oversimplifications. Al-driven forecasting methods have been evolving to
overcome these challenges and improve results. Various Al and machine learning techniques
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are being applied to production forecasting. For example, a hybrid Al model for oil
production showed significant improvements in accuracy compared to traditional methods
(Abdullayeva and Imamverdiyev, 2019), and a recent comparative analysis of machine
learning techniques predicted oil production to a much higher degree of accuracy
(Omotosho, 2024). Recently, ExxonMobil’s Al-powered demand forecasting model was
reported to have reduced forecast errors by 25% (Kuang, et al., 2021).

The use of Al can also significantly increase the potential for operations, monitoring and
control to be carried out remotely. A typical oil platform operates tens of thousands of
sensors (measuring aspects such as the temperature, pressure, and flow rates of produced
liquids), which generate terabytes of data. Analysing and utilising these data streams from a
centralised, remote location can increase efficiency and safety and reduce the costs of
operations, which Al can assist in the management of (Figure 3.3). For example, cloud
computing allows for the remote analysis of datasets, remote operational decisions and the
creation of digital twins, such as Aker BP’s recent streamlining of operations with digital
twins.

Figure 3.3 > Al applications in oilfield operations

Methane emissions
monitoring by satellites %
is enhanced with Al-based ’

data processing to pinpoint Q %

leak sources and make
faster repairs

Exploration for resources
uses Al in models to
increase interpretation
efficacy and success rates

Supercomputing and
modelling with Al
delivers more accurate
results across the sector

Refinery operations data analysed
with Al models enables predictive
maintenance to reduce downtime,
lower costs, and improve safety

Production and operational data
can be better interpreted using
Al tools to optimise performance

IEA. CCBY 4.0.

Many Al applications require input from sensors and the ability to process data remotely
and quickly, supported by networks enabling data flows across geographies and systems
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Assessing sector-wide impacts on costs

It is unlikely that Al can reduce the costs of all oil and gas production as things stand: many
facilities around the world were installed some time ago and do not necessarily have the
appropriate infrastructure to accommodate Al (retrofitting these facilities would carry
additional costs, making the application of Al less attractive). Nonetheless, we can illustrate
the potential of Al to reduce costs for new facilities by considering an example of new
deepwater offshore oil development.

Producing oil from a new field involves labour, drilling, materials, and data processing and
storage costs at each of the exploration, development and operations stages. A new offshore
deepwater oil development today, with 25 million barrels of recoverable hydrocarbons,
would cost around USD 10 per barrel in development and USD 15 per barrel during
operations.

Figure 3.4 > Cost of exploration, development and operations today and in
the Widespread Adoption Case for a new oil deepwater project

Exploration Development Operations
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o - and storage
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IEA. CCBY 4.0.

In the Widespread Adoption Case, Al-led interventions could reduce the costs of finding,
developing and operating a new deepwater offshore project by up to 10%

Note: WAC = Widespread Adoption Case.

We estimate that the widespread use of Al would mean drilling operations would become
more efficient (e.g. fewer exploration wells would be required and production wells could be
better targeted) (Figure 3.4). There would also be reduced labour needs (e.g. by allowing
some operations to be carried out more remotely), and overall expenditure on materials
would be lower (e.g. from more streamlined materials supply chains and less waste). Data
processing and storage needs would increase substantially, but computing costs would
become less expensive per unit of activity given economies of scale and the adoption of Al
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processes. Overall, we estimate that in the Widespread Adoption Case (introduced in
Box 3.1) deepwater costs could be reduced by up to 10%.

The reduction in the cost of oil production — in deepwater areas or elsewhere — does not
necessarily imply a proportional reduction in the price of fuels at the pump, as that is
determined by wider market forces as well as duties and taxes. Nonetheless, a marginal
reduction in the oil price could lead to increased oil use, which in turn would have broader
implications for greenhouse gas emissions. Section 5.8 in Chapter 5 includes discussion and
analysis of these impacts.

Methane emissions reduction and carbon capture

The production and use of oil, gas and coal currently results in around 140 million tonnes
(Mt) of methane emissions per year, or 4.2 gigatonnes of carbon dioxide equivalent
(Gt COz-eq). This is around one-third of current anthropogenic methane emissions. A
growing number of oil and gas companies have set methane targets, joining initiatives such
as the Oil and Gas Methane Partnership 2.0 (OGMP 2.0), the Oil and Gas Climate Initiative
(OGCl), and the Oil and Gas Decarbonization Charter (OGDC).

Despite commitments by countries and companies around the world, flaring and methane
emissions from fossil fuel operations remain near record levels (IEA, 2024a). Al is now being
deployed to boost data processing techniques to detect and quantify total emissions, both
from major leaks over large areas and smaller leaks at the facility level. For example,
automated Al-driven methane emitter monitoring systems using two satellites (Sentinel-2
and Landsat) were recently deployed at the International Methane Emissions Observatory’s
Methane Alert and Response System.

One particularly promising area is in rapidly detecting fugitive emissions, which comprise
around 20% of methane emissions from oil and gas operations. These leaks can usually be
repaired quickly once they are found, and the main challenge is finding them in an efficient
and low-cost manner. Leak detection and repair programmes seek to do this, involving either
equipping trained staff with optical gas imaging cameras or the use of airborne and satellite
observations. Al can significantly improve the design and implementation of both of these
approaches, including by reducing labour intensity and costs and improving the likelihood of
finding leaks (Xia, Strayer and Ravikumar, 2024).

For the oil and gas industry, deep learning approaches enabled by Al allow data processing
to classify emissions more quickly and predict future emissions to prevent leaks altogether
(Bo, Zhang, and Liu, 2024; Aljameel et al., 2024; Wang et al., 2020). For airborne and satellite
observations, Al allows the large amounts of data collected to be processed much more
quickly to derive leak size and persistence. The use of remote sensing equipment also opens
the possibility of continuously monitoring production facilities.

If the widespread adoption of Al could allow for continuous monitoring to take place at a far
larger number of facilities and pipelines than is currently the case, this could help reduce
emissions significantly, often at low cost. Based on data from the IEA’s Global Methane
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Tracker (IEA, 2024a), we estimate that if continuous leak detection and repair were to be
implemented at sites that can currently only be examined quarterly or less frequently, this
could avoid nearly 2 Mt of methane emissions globally (equivalent to around 60 Mt CO,-eq).
The costs of doing this would be around USD 1.6 per million British thermal units (MBtu),
much lower than the average cost of USD 2.3 per MBtu of quarterly leak detection and repair
programmes.?

Another important possible deployment of Al is to improve the planning of carbon capture,
utilisation and storage (CCUS) projects. Effective CCUS relies on subsurface knowledge and
reservoir simulation. By enhancing reservoir models, additional computing power and Al can
provide more certainty around the efficacy and costs of long-term CO; storage. Several oil
and gas operators and service providers have been partnering with Al companies to improve
carbon management, including Cerebras, a semiconductor and Al company that has
partnered with TotalEnergies to improve carbon storage simulations (Cerebras, 2022).

3.3.2 Al for critical minerals supply

In the mineral mining sector, machine learning and Al techniques already play a significant
role in exploration, mine operations and extractive metallurgy (Table 3.3). Many Al
techniques in mineral exploration parallel those in upstream oil and gas industries, where
machine learning has long been used for subsurface data interpretation, reservoir simulation
and reducing uncertainty (Box 3.2). Al can be used to process geophysical data to improve
anomaly detection and orebody prediction, lowering costs and boosting resource confidence
while reducing sampling needs.

Once an ore deposit is identified, Al can contribute to improving productivity, safety and
cost-efficiency in mining operations. Autonomous haulage systems allow for high-utilisation
operations, reducing labour costs while increasing safety and fuel efficiency. Predictive
maintenance algorithms analyse sensor data from heavy machinery to anticipate failures
before they occur, helping to reduce unplanned downtime and extend equipment lifespans.
Al is also being applied to ore tracking systems that monitor material movement from
blasting through processing, ensuring that high-grade material is prioritised while minimising
waste and environmental impacts.

Refining and metallurgical processes can also benefit from Al, which is driving gains in
efficiency and recovery rates. Machine learning algorithms analyse real-time plant data, such
as temperature, pressure and flow rates, to fine-tune processing conditions dynamically.
Sensor-based sorting systems use Al to distinguish valuable ore from waste, improving
pre-concentration and reducing the volume of material. Computer vision technology is being
applied in flotation circuits to optimise mineral separation and recovery rates.

! These costs do not include the potential savings that accrue in many instances because the additional
methane gas that is captured can often be sold or used.
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Table 3.3 >

Application Description

Resource management

Enhanced resource
discovery, assessment and
characterisation

Exploration

Impact on energy

@ Low: Higher discovery
success rates, lower costs,
faster exploration
timelines

Key applications of Al across the mining life cycle

Example ‘

Geophysical data analysis,
remote sensing,
geochemical modelling,
drill target optimisation

Operational optimisation

Mine
operations

Enhanced automation and
assessment of operations to
improve efficiencies

Processing and Enhanced use of data from

metallurgy real-time processing
operations to gain
efficiencies

@ Low: Increased
productivity and safety,
reduced downtime and
operational costs

Medium: Higher recovery
rates, lower energy and
reagent consumption,
improved process
efficiency

Predictive maintenance,
fleet dispatch, ore grade
control

Process automation,
sensor-based sorting,
machine vision in
flotation, metallurgical
modelling

Automation and autonomy

Mine Removal of human Medium: Increased Autonomous haulage
operations operation of haulage productivity and safety,
vehicles reduced downtime and
operational costs, higher
fuel efficiency
Box 3.2 > Reducing uncertainty in mineral exploration with Al

The Mingomba copper deposit in Zambia ranks among the largest undeveloped copper
deposits in the world. It is estimated to contain about 250 million metric tonnes of copper
at a grade of 3.6%, around seven times the grade of the average copper mine. (Lobito
Corridor Investment Promotion Authority, 2024)

It was first discovered in the 1970s and planned as an extension to the Lubambe mine,
located in the heart of the Zambian Copperbelt. Commercial copper mining in the region
has been ongoing for more than a century, relying on its large, high-grade orebodies.
Despite the resource potential indicated by the deposit’s proximity to existing reserves
and commercial operations, the depth of the orebody — more than a kilometre
underground — presented challenges in resource characterisation and recovery.

In 2022, KoBold Metals, a company specialising in Al-driven mineral exploration, acquired
a stake in the Mingomba project and began applying its machine-learning and data-driven
geoscience methodologies. In 2024, KoBold validated the conclusions of a 2020 concept
study commissioned by Lubambe. Unlike conventional greenfield exploration, Mingomba
provided a rich legacy dataset — including seismic surveys and historic drill core logs —
which KoBold used to train its Al models.

Rather than relying on costly, high-density drilling, the Al model focused surveying efforts
on areas that would yield the most useful data. This iterative process, comprising data
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acquisition, model refinement and expert decision making, allowed geologists to improve
resource estimates while minimising costs and environmental impact.

This illustrates the ongoing technological advances in mineral exploration in which Al and
machine learning are augmenting geologists’ decision making. As high-grade, near-
surface deposits are depleted, expanding and rapidly assessing the search space for
mineral resources is essential for secure, affordable mineral supplies.

Al models trained on multimodal datasets — including geophysical, hyperspectral and
drilling data — can detect patterns imperceptible to traditional methods, improving the
likelihood of success of both greenfield exploration and the reassessment of complex
deposits. Most models are currently trained on specific geologies based on the available
data, making the identification of significant resources elsewhere in the world beyond
their capability.

3.4 Al for the electricity sector

3.4.1 Al applications for power system operations

The electricity sector is on the brink of a significant transformation, facilitated by the rapid
advancements in Al. Over the next decade, Al has the potential to play a pivotal role in the
way power is generated, distributed and consumed, leading to increased efficiency,
sustainability and resilience.

The power system has become increasingly complex in many countries, as the production of
electrical power has shifted from large, centralised power plants to a multitude of small,
distributed sources (Figure 3.5). In parallel, a digitalisation revolution is producing large pools
of data, which in turn can be used to manage the complexity of the whole system. The
integration of Al into the electricity sector could bring significant system-wide benefits with
its ability to process huge amounts of data and provide optimisations based on trained
models rather than predetermined rules. Al has the potential to play a critical role in
managing the complexities of integrating renewable energy sources into the grid. Al-
enhanced control systems could allow plants and facilities to operate at their rated
performance for longer periods, improving efficiency while minimising downtime.

Managing the electricity system through traditional methods and rules — for example, direct
communication with power plants to manage operations or the tiered response approach to
frequency control — may still work in increasingly complex environments but would not take
advantage of the potential of new technologies. As the number of sources of power system
flexibility increases substantially, either in the form of energy storage or demand-side
response, operational approaches need to be upgraded. Further examples are the fast-acting
converters that are part of any solar photovoltaic (PV) array or wind turbine, and battery
storage installations, which could be called on to a greater degree with more automated
systems.
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Figure 3.5 > Al applications in electricity generation and transmission
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Power systems are increasingly complex, with more distributed sources and a wider set of
flexibility sources, requiring more advanced operation methods that would benefit from Al

An important Al application at the system level is to enhance the forecasting of electricity
demand and supply from variable renewables in order to optimise the use of power sector
assets, including dispatchable power plants, energy storage and demand-side flexibility, and
ultimately improve the overall efficiency of the power system. Al is already applied at the
system level. For example, from the IEA Survey (see section 3.4.3) RTE in France and Elia in
Belgium apply Al for real-time forecasting to assess system imbalances. The Nostradamus Al
tool from Hitachi Energy provides accessible load, market price and renewable forecasts
(Hitachi Energy, 2024). IBM Research established the GridFM working group to enhance
power grid operations and planning with Al, focusing on resilience, efficiency and renewables
integration using pre-trained optimal power flow models and multimodal data for outage
prediction and load forecasting (IBM, 2024).

Advanced Al-driven weather and demand prediction models allow grid operators to
anticipate fluctuations more accurately, minimising the curtailment of wind and solar PV in
conjunction with demand shifting or storage. Al can significantly improve the accuracy of
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weather forecasts by analysing vast amounts of historical and real-time meteorological data,
which can also improve the resilience of energy systems (see section 3.6). For example,
DeepMind’s wind power forecast was found to increase the financial value of wind energy
by as much as 20% (Google DeepMind, 2019).

Machine learning models can predict local weather conditions, such as wind speeds and solar
radiation, with high precision. These accurate predictions help anticipate the output of wind
and solar farms at specific locations. For example, in the United Kingdom, Al improved the
National Grid ESO solar forecast significantly for up to 8 hours ahead (Fulton, et al., 2024),
and KEPCO in Korea uses Al for wind speed prediction and to simulate real-time weather
impacts on generation capabilities. Additionally, by optimising the integration of renewable
energy sources, the reliance on fossil fuel-based power generation can be reduced. For
example, reducing global average curtailment by a single percentage point in 2035 could cut
demand by about 28 million tonnes of coal equivalent (Mtce) of coal and 14 billion cubic
metres (bcm) of natural gas, avoiding approximately 120 Mt of CO, emissions.

The above applications of Al at the power system level can also enhance the efficiency of
fossil fuel power plants. Thermal power plants, traditionally designed for continuous
operation with high capacity factors, are experiencing a major shift in their operations. With
increasing shares of wind and solar PV in many systems, the role of thermal power plants is
evolving, with more emphasis on flexibility, which reduces their average efficiency. Such
efficiency reductions can be minimised where the application of Al to power system
operations allows improved scheduling so that flexibility-enabled thermal power plants can
operate at higher utilisation rates. A single percentage point improvement in efficiency could
reduce the fuel consumption and emissions of a coal-fired plant by 2.5% and a natural gas-
fired plant by 2%. These measures not only optimise resource utilisation but also lower
system costs and enhance grid stability.

3.4.2 Al applications for power plants and storage

The synergy between Al and digitalisation has the potential to lead to significant gains in the
operation of power plants and storage. Potential applications of Al in power generation with
significant impacts include faster research, process optimisation, dispatch prediction and
service interventions (Table 3.4). Additionally, Al could enable better management of energy
storage systems, ensuring that renewable power is effectively stored and released into the
grid when needed.

Al-driven data analytics could improve planning, project design and real-time operational
decisions, resulting in reduced fuel consumption, lower CO, emissions and extended asset
lifetimes. Below are several examples of Al use cases in power plants and storage at different
project stages.
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Table 3.4 > Potential applications of Al in power generation

Application Description Impact on energy Example

Design and development

Planning and Selecting the optimal Medium: Maximise asset Al used to optimise the
design equipment, siting and performance, lifetime design of renewable
infrastructure planning for operation and returns on projects such as wind and
power plants and storage investment solar PV farms
projects
Process Processes necessary to @ Low: Productivity Generative Al analyses
optimisation deploy generation increases, generally tender documents and
installations involve resulting in cost savings ~ supports the creation of
repetitive tasks proposals

Operational optimisation

Dispatch Operators need to decide Medium: Increases Market models representing
prediction when to activate their efficiency of the market, the merit order system use
assets enables players to Al to predict day-ahead
improve their business market prices
models
Anomaly Operational data need to Medium: Relieves Al is trained with normal
detection be analysed both online human experts from signal patterns, as well as
and offline for unusual routine tasks, increases  patterns from irregular
patterns productivity events, and raises the alarm

upon detecting irregularities

Service Service moving from @ High: Potential to reduce Al uses operational data
interventions predetermined inspection number of inspections from heat recovery steam
and maintenance during lifetime and/or generators to predict wear
schedules to more extend lifetime of and corrosion status, thus
flexibles ones equipment reducing on-site inspection
needs
Autonomous Plants able to be @ High: Several Al uses sensor data, expert
operation maintained and operated intermediate stages exist knowledge and even data
with reduced staff to achieve fully collected by maintenance
autonomous operation;  robots or drones to ensure
cost benefits increase safe and reliable remote or
with each step autonomous operation

Improving planning and design choices

At the earliest stage of a power plant or storage project, Al can be applied to make better
choices concerning the planning and designs. For renewable energy projects, Al is being
applied to design solar and wind projects, including the selection of primary equipment (solar
panels or wind turbines), the siting of the equipment (orientation of panels, available areas
and spacing of turbines) and the planning of supporting infrastructure, all to optimise
performance and returns on investment. Examples of Al tools to optimise renewable project
designs include the Wind Plant Graph Neural Network from the US National Renewable
Energy Laboratory, the Sedar project by lberdrola with the Barcelona Supercomputing
Centre, Aurora Solar and the Google Maps Platform Solar API. For nuclear energy, Al is being
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developed to improve reactor design and performance, benefiting from previous designs and
experience, with the aim of reducing construction costs, extending operating lives, raising
operational flexibility and enhancing safety. For battery storage, Al is being applied to
optimise charging cycles and defect monitoring in order to extend asset lifetimes, reduce
costs and maximise value.

The application of Al in the planning phase of thermal power plants relies on the digital data
created during the operation of existing units. The typical number of sensors for a gas-fired
power plant is more than 6 000. Depending on the sensor type, time resolution ranges from
milliseconds to hours, and the amount of data points produced can be anywhere from a few
thousand to several million per year for each sensor.

While rule-based algorithms can already extract much useful information from the pool of
data produced by a power plant, using the data to train Al models adds many more potential
use cases. Digital twins, which are virtual replicas of physical assets or processes, can benefit
from Al’s ability to make up for deficiencies in the representation, for example insufficient
numbers of sensors, straying material properties or manufacturing tolerances.

Streamlining permitting and construction

In the next phase of a project, Al can also be applied to accelerate permitting and licensing
processes, which often span several years and require thousands of pages of documents to
be drafted by applicants and processed by regulators. Lengthy permitting times have been
flagged as a concern for countries seeking to reach their policy ambitions, including for
renewables. Recent efforts have been made to shorten timelines, including a rule in the
European Union targeting a maximum limit of two years for wind power projects. Al tools
can benefit from previous permitting processes and environmental data, enabling faster
processes and better outcomes. For example, in the United States, a project is underway to
train Al tools with information from over 28 000 documents related to close to
3 000 environmental impact statements (PNNL, 2024).

During the construction phase of power plants and storage, Al can be applied to streamline
complex logistics and project planning, reducing construction times and costs. For example,
wind turbine logistics are complex as a result of their size — a single blade can exceed
100 metres even for onshore projects. An Al machine learning tool from GE Vernova is
targeting a 10% reduction in the logistical cost of installing wind turbines. Broader gains in
technology supply chains would reduce construction times for a wide range of power plants
and storage assets (GE Vernova, 2022).

Improving operational decisions

Once built, Al can be applied to improve the operation and maintenance of power plants and
storage assets, offering the potential to increase uptime, improve efficiencies, reduce
maintenance and fuel costs and even reduce stress on the asset. Predictive and condition-
based maintenance strategies can potentially yield benefits in all these areas. These
approaches rely on Al models trained with historic and asset-specific operational data. Al can
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also facilitate the development of digital twins, such as those available from Siemens Energy,
which have the potential to enable real-time monitoring and simulation of power sector
assets, allowing for proactive maintenance and performance optimisation. Al could also be
applied to key component inspections, with Al models trained to support visual screening by
human experts.

Al can also be applied to optimise the operation of individual assets by using local weather
and wholesale market predictions for demand and prices. Two examples of improved local
weather forecasting are the MeteoFlow project by Iberdrola to optimise renewable energy
output, applying big data, machine learning and Al (Iberdrola, 2016), and the Myst Al tool
used by Enel to rapidly create highly accurate forecasts of renewable output (Enel, 2022). Al
can also be used to predict hydropower inflow and generation, both in the short term
(Sapitang, et al., 2020) and in the longer term, taking into account the effects of climate
change (Salomon, et al., 2022). In the current energy landscape, thermal power plants are
increasingly being utilised for load-following operations. This means that instead of operating
at a constant output, these plants adjust their power generation to match the electricity
demand. During periods of high renewable energy output, thermal plants reduce their
output, and conversely, they ramp up production when renewable sources are insufficient
to meet demand. This flexibility is crucial for maintaining grid stability and ensuring a reliable
supply of electricity. Improved accuracy of predictions over minutes, hours, days and months
could enable more optimal use of thermal and storage assets, enabling more continuous and
efficient operations (Hanley and McGuire, 2023).

Expanding capabilities of power plants

Beyond the normal operation of power plants, Al has the potential to expand their accessible
technical capabilities. Regulations governing the power sector and power plants have been
developed over decades, including detailed codes and standards related to their technical
capabilities. One example of this is the power factor requirement for an electric generator.
Frequently, the generator rating (in mega-volt amperes) is required to be up to 25% above
the driving turbine’s capability (in megawatts). While there are scenarios that do require a
certain margin, such as grid disturbances, most assets’ mega-volt ampere utilisation is only a
few percentage points above the turbine rating. Al tools could be applied to assess the real-
time requirements in the grid surroundings and enable a reduction in the margin in many
individual cases. This would allow smaller generators to be specified at lower cost.

Power plants are also governed by customary requirements in tender documents that
sometimes inhibit technical progress, like the application of Al. To unlock the extent of these
opportunities, codes, standards and tender documents should be reviewed and adapted
where appropriate.

Potential impacts of widespread adoption of Al in power generation

The widespread adoption of known Al applications in power plant operations and
maintenance can yield substantial benefits. In the Widespread Adoption Case (see Box 3.1
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for the methodology), Al has the potential to reduce operations and maintenance (0&M)
costs by up to 10%, resulting in annual savings of approximately USD 40 billion (Figure 3.6).
This is based on the assumption that 80% of costs are fixed O&M and 20% are variable O&M,
with savings of 5% in fixed O&M through process automation and 10% in variable O&M
through operation optimisation.

Figure 3.6 = lllustrative potential annual cost savings in the Widespread
Adoption Case in power plant operations worldwide, 2025-2035
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The integration of today’s Al applications in power plant operations and maintenance
can yield potential cost savings of up to USD 110 billion annually worldwide to 2035

Note: MER = market exchange rate.

Efficiency improvements in fossil fuel power generation also play a crucial role. By optimising
plant O&M schedules, average efficiency could increase by 3%, leading to annual savings of
200 Mtce of coal and 95 bcm of gas in the Widespread Adoption Case, while preventing an
additional 850 Mt of CO, emissions. Enhancing efficiency to achieve 6-8% more electricity
output per unit of fuel could be translated into fuel savings of around USD 40 billion per year,
with 65% of the total savings coming from coal-fired power generation.

Extending the operational lifetime of power plants through Al could lead to considerable cost
savings due to lower investment requirements. By prolonging the service life of all power
plants by four years, the retirement of 435 gigawatts (GW) of capacity could be postponed
by 2035, including 120 GW of wind and 50 GW of solar PV plants. This also includes the
option of delaying the retirement of 170 GW of coal-fired plants and 60 GW of gas-fired
plants, which could help avoid locking in new assets for decades. Consequently, up to 7% of
cumulative investment in new power plants could be deferred during this period, amounting
to USD 760 billion. This would save up to USD 35 billion annually in capital recovery
payments (annual payments to recover the initial investment).
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3.4.3 Al for electricity networks

Electricity grids are essential infrastructure that form the backbone of modern power
systems, delivering electricity to homes, businesses and industries. These networks are
evolving rapidly from traditional centralised systems into complex, digitalised networks that
must safely accommodate variable renewable energy sources and distributed resources.
Because these systems cannot tolerate failures — as interruptions can have widespread
impacts on essential services — grid optimisation is increasingly important to improve
efficiency and performance across operational parameters. The increasing complexity of
grids demands significant investment in modernisation, expansion and digitalisation to
prevent them from becoming bottlenecks to secure energy transitions. This includes
deploying new transformers, power lines and pylons across both advanced economies and
emerging market and developing economies to meet growing demand, replace ageing
infrastructure and enhance resilience against extreme weather events and other disruptions.

Table 3.5 > Potential applications of Al in the real-time operations of
electricity networks
Application Description Impact on energy Example ‘

Operational optimisation

Dynamic Framework that sets real- @ High: Reduces congestion A grid operator increases
operating time, adjustable operating costs, increases renewable line capacity by 15-30%
envelope limits for grid-connected integration, defers grid during cooler weather
devices based on current reinforcement investment  conditions, safely
network conditions to and optimises existing accommodating
maximise available capacity infrastructure utilisation additional renewable
while maintaining security; without breaching security generation
includes dynamic security limits
assessment
Fault Uses sensors and Al High: Reduces outage A distribution system
detection and  algorithms to quickly duration by 30-50%, operator detects a fault
localisation identify and pinpoint grid improves system reliability ~within seconds and
faults, reducing outage metrics (SAIDI/SAIFI), precisely locates it within
duration and improving lowers restoration costs a 100-metre section,
response times and enhances customer immediately dispatching
satisfaction repair crews to the exact
location
State Employs advanced High: Improves grid An Al system continuously
estimation and algorithms to monitor stability during variable monitors voltage levels
automation distribution grid conditions renewable generation, across the distribution

in real time by inferring from
measured points the
electrical parameters at
points without direct
observability, enabling
automated responses to
maintain stability and
optimise performance

reduces operating margins,
enables higher distributed
renewables integration and
decreases manual
intervention requirements

network, automatically
adjusting transformer tap
settings to maintain
optimal voltage profiles

Note: SAIDI = system average interruption duration index; SAIFI = system average interruption frequency

index.
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While Al delivers value across grid management, its most significant impact comes from
short-term operational applications (Table 3.5). The increasing complexity of power systems
demands advanced tools for two distinct challenges. First is ensuring human safety: real-time
grid operations must prioritise human safety and reliable electricity supply above all else.
Second is system optimisation: Al can help optimise the available capacity in the system —
balancing generation, consumption and grid utilisation more efficiently in an increasingly
variable environment. This approach delivers faster and potentially more cost-effective
improvements without requiring new infrastructure investment. For long-term planning, Al
helps navigate the substantial uncertainties in future electricity demand driven by
widespread electrification, as well as the unpredictable evolution of power system
technologies — from sophisticated grid solutions to emerging generation options — all while
accounting for interactions with broader energy system developments.

Current Al adoption patterns in electricity networks

Despite higher potential benefits, short-term applications face greater resistance to Al
adoption among grid operators. Our survey of grid operators from 13 countries, comprising
Australia, Belgium, the People’s Republic of China, Czechia, France, Germany, Ireland, Italy,
Japan, Korea, Malaysia, the Netherlands and the United States, shows that only 23% use Al
for real-time operations, while 54% have implemented Al for grid development planning and
nearly 70% for asset maintenance and operation planning. Al applications in real-time
operations focus on determining system imbalances, and load and generation forecasting,
especially for renewables. Some operators expressed concerns about using Al in real-time
operations, avoiding Al applications or limiting them to auxiliary assistants that advise
operators in decision making. Operators use Al in asset operation planning to define and
calibrate maintenance policies and activity planning, such as optimised scheduling and
operation mode.

While real-time validation mechanisms for Al-driven grid decisions remain an emerging field
with few established benchmarks or industry standards, there is greater receptivity to Al
applications with extended decision time frames. Post-mortem analysis — the detailed
investigation of power system failures and incidents to determine the root causes — allows
for unhurried validation of Al-generated insights without operational time pressure. For
example, 8% of respondents use generative Al for fault diagnosis.

Similarly, long-term scenario planning leverages Al’s capacity to process datasets and identify
patterns within complex energy system interactions across different time frames. Tapestry’s
Grid Planning Tool (Google X, 2024) enables large-scale, long-term grid simulations with high
resolution, allowing grid planners to efficiently plan and reliably integrate renewable energy
sources.

By using Al to run simulations, the power system operator in Chile can explore a wider range
of scenarios and make informed decisions about grid investments and operations. Al
effectively balances multiple competing objectives and criteria, a critical advantage in
complex grid planning. From the survey, examples of Transmission System Operators (TSOs)
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applying Al for planning include KEPCO in Korea, which uses Al for optimal energy planning
and site selection and Elia in Belgium utilising graphics processing unit-based load flow
computations for network planning.

Figure 3.7 =  Utilities using Al applications by category, 2024
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Al’s support for electricity grids today focuses on optimising asset operation planning
and maintenance, including fault prevention by automated image recognition

In asset management, Al helps optimise maintenance schedules and equipment replacement
based on condition monitoring, with decisions that can be methodically evaluated and
refined. The survey results show that around 30% of respondents use image recognition Al
to monitor and manage assets, including signal processing and the tracking of vegetation
growth. For example, the State Grid Corporation of China (State Grid) applies reinforcement
learning and Al to optimise scheduling and operation modes — advanced Al techniques that
help manage complex trade-offs in grid asset operations. Among the TSOs, TEPCO in Japan,
RTE in France, State Grid and the Elia Group all reported successful implementation of Al
image analysis for asset monitoring and management, particularly for vegetation
management. Hitachi Energy is one provider of such solutions (Hitachi Energy, n.d.). EirGrid
is also exploring machine learning for predictive maintenance. Such applications could
extend the operational lifespans of networks. For example, just two additional years in
lifespan would defer the construction of over 3 000 km of new lines by 2035, reducing
cumulative grid investment by USD 300 billion and saving around USD 15 billion annually in
capital recovery payments.

However, adoption remains limited in system-critical operations despite their higher
potential value. While some TSOs employ “auxiliary Al assistants” for decision support, real-
time operations continue to rely on conventional tools and human expertise, with hesitancy
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to implement Al solutions in time-sensitive scenarios, even where clear benefits have been
demonstrated. As a result, some of Al's most valuable potential contributions remain
underutilised in daily grid operations. Such caution is understandable for critical
infrastructure. TSOs prioritise human oversight while gradually leveraging Al capabilities,
maintaining essential reliability standards for the power system. Nevertheless, a balance is
needed to preserve the necessary safeguards for critical infrastructure while accelerating
adoption where appropriate to benefit from the efficiency gains and technological
advancements that more comprehensive Al integration could deliver.

Implementation challenges and the way forward for Al in grids

The barriers to Al adoption in grid operations are common to those faced by all parts of the
energy sector, as further discussed in section 3.7. Specific to grid operations, the barriers are
predominantly institutional rather than technical, reflecting broader challenges in deploying
new technologies rather than Al specifically. While some TSOs have embraced dynamic line
rating (DLR) solutions, the majority of grid operators lag behind, despite DLR’s proven ability
to safely increase transmission capacity with clear technical benefits (see Box 3.3). This
illustrates a potential pattern of resistance to innovation stemming from multiple factors: a
cautious operational culture that favours maintaining current reliable practices over
adopting new approaches, challenges faced in developing internal expertise that can bridge
traditional power system knowledge and emerging technological capabilities, and a shortage
of Al-skilled talent coupled with insufficient knowledge sharing.

Beyond institutional barriers, there are significant technical challenges with Al itself. In
particular, Al systems often disregard physical laws and constraints, whereas electric utilities
must adhere to these laws. The development of more mature and physically constrained Al
solutions remains an area requiring improvement.

Regulatory frameworks further compound these challenges as they lack incentives for grid
optimisation and struggle to evaluate novel technologies. Traditional regulatory models
inadequately assess and manage risks from new approaches, while the transition from pilot
projects to standard practice lacks structured support. Despite initiatives like regulatory
sandboxes, TSOs receive insufficient backing for the R&D investments needed to establish
new operational standards, creating a persistent innovation gap.

One of the significant limitations of relying solely on Al is that it falls short of providing
transparent and auditable decision-making processes, as required by regulations. For
example, event reports are mandated to document why human operators made specific
decisions, but current Al systems lack the capability to articulate their own decision-making
logic or provide a clear rationale for their actions in written documents.

Implementation requires thoughtful human integration. While Al excels at analysing datasets
and recognising patterns, it cannot fully replicate human judgment in complex operational
decisions. Historical data may not capture emerging system behaviours in evolving power
systems. Explainability is key: engineers need to easily understand the underlying data and
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assumptions to trust and act upon Al recommendations. Human expertise remains essential
for understanding system-wide implications and managing unexpected situations, with
ethical considerations and accountability necessitating clear human oversight. The challenge
is to combine Al's analytical strengths with operators’ contextual understanding to create
robust, reliable systems.

Building on these implementation principles, accelerating Al adoption in grid operations
could benefit from addressing several barriers simultaneously. Grid operators could consider
creating dedicated teams with both power system and data science knowledge to address
the data quality issues. EDP’s Digital Factory (EDP, n.d.) has successfully integrated these skill
sets to develop Al-based predictive maintenance and grid flexibility solutions. Knowledge
sharing through peer networks and case studies offers ways to spread successful approaches
across the sector. Examples include GO15 (GO15, n.d.), IEEE Power & Energy Society (IEEE,
n.d.), Cigre (Cigre, 2022), the International System Operator Network (AEMO, n.d.), the
Energy Systems Integration Group (ESIG, n.d.) and the Neural Information Processing
Systems Foundation (Neural Information Processing Systems Foundation, n.d.), with which
the French TSO RTE has been involved through its Learning to Run a Power Network
competitions.

Beyond traditional funding, regulatory frameworks could evolve to include incentives
rewarding improved grid capacity utilisation while maintaining reliability standards, as with
the European Union Agency for the Cooperation of Energy Regulators (ACER, n.d.), Australian
Energy Regulator (AER, n.d.) and the Federal Energy Regulatory Commission (United States,
FERC, 2021). Well-designed regulatory testing environments, such as those in the
United Kingdom (Ofgem, n.d.) and Singapore (EMA, 2024), present opportunities to bring
new solutions to market more quickly. Training programmes combining power system
fundamentals with Al literacy can help operators maintain appropriate control while
benefiting from Al’s analytical capabilities. These complementary approaches recognise that
successful Al integration depends on both technical excellence and human expertise working
in concert.

Box 3.3 > Dynamic line rating in power grids: Unlocking unused capacity

Dynamic line rating (DLR) technology enables transmission lines to carry more electricity
than their rated capacity. Instead of always using the same fixed limit, grid operators can
adjust and safely expand the limit when weather conditions are conducive. For example,
when it is cold or windy, the lines become physically cooler, allowing them to carry more
electricity. Global experience shows that typically, transmission lines can safely carry 20-
30% additional capacity above their maximum rating for around 90% of the time in any
given year.

The value of Al with DLR lies in maximising the benefit of this additional capacity. When
available, Al assists power system operators in deciding how to optimally use this
capacity against other options, such as having to curtail renewables because of a lack of
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grid transfer capacity, or building a whole new line in order to accommodate new peak
flows. DLR technology does not necessarily rely on Al and has been tested and
implemented by grid companies worldwide. However, real-time monitoring is crucial as
actual conditions can occasionally fall below static ratings, creating undetected safety
risks — making direct measurement vital for equipment safety.

This untapped resource could be mobilized quickly. DLR systems could activate 115-175
GW of additional global transmission capacity at a fraction of the $35-52 billion cost of
equivalent new power lines. DLR’s core value comes from its ability to accommodate new
power flows from increased demand or generation sources, effectively preventing
bottlenecks that would otherwise require costly interventions. Nonetheless, barriers
remain, including resistance from conservative utility cultures and the lack of regulatory
incentives for efficiency innovations.

Not all lines require DLR, as bottlenecks are typically concentrated in specific sections.
The French grid operator RTE estimates that equipping only 20 lines from its transmission
fleet would maximise benefits. Grid operators should conduct cost-benefit analysis to
identify priority candidates, considering deployment costs — typically a few hundred
thousand dollars per line — against potential value. The economic calculation for
determining how benefits are distributed among generators, consumers and operators
varies by market structure and regulatory framework. For example, in the United States,
on implementing DLR, PPL Electric Utilities (PPL, 2023) saved USD 65 million in one year
by avoiding congestion costs on a single line (PV Magazine, 2025). In Belgium, socio-
economic benefits of several thousands of euros have been reported in just hours,
particularly when DLR enabled access to cheaper imports during periods of supply
constraint (CURRENT, 2021).

For distribution circuits, the cost-benefit ratio has traditionally been less favourable due
to lower electricity volumes. However, distribution grid companies like Arva in Norway
managed to save EUR 30 million by avoiding a line upgrade to connect a wind farm by
using a DLR system from Heimdall Power (Heimdall Power, 2022).

3.5 Al for energy end-uses

In addressing Al for end-users of energy, this report focuses on Al applications for energy
optimisation in industry, transport and buildings. These sectors together account for around
95% of global end-use energy demand and have become increasingly digitalised and
connected, unlocking the potential for Al-led optimisation.

3.5.1 Al forindustry

The industry sector accounts for 39% of energy end-use and 45% of CO, emissions from
energy. Energy-intensive industries account for more than two-thirds of industrial energy
demand, using energy in processes to produce basic materials such as steel, cement, primary
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chemicals, aluminium and paper, many of which require high temperatures. Light industries
produce higher-value goods, such as electronics, machines and transport equipment,
accounting for more than three-quarters of the total value added of the industry sector.

In industrial settings, the main driver of Al uptake is the reduction in production cost by
increasing productivity, reducing plant downtime and reducing operating costs, especially
for materials and energy. Al can also accelerate the development of new products. So far,
only early adopters (less than 20% of companies) have introduced industrial Al tools, but
recent technological breakthroughs, especially with large language models, have raised
awareness of Al's potential. These breakthroughs, alongside advancements in hardware and
software, have driven increased interest in Al in industry, with many companies reporting
plans to implement Al solutions in the coming years (Reuters Events, 2024).

Figure 3.8 = Al applications in industry
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Al applications in the industrial sector can be divided into seven categories. Three of them —
predictive maintenance, robots and quality control — are Al applications that are usually
directly incorporated into the physical manufacturing process (Figure 3.8). A further three —
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generative design, digital twins and supply chain management — are applications that can
improve the product development process and general operations. The final category is the
optimisation of production processes, which combines both aspects by collecting data from
sensors in the physical process and evaluating the data to optimise operations.

Table 3.6 = Applications and potential impact of Al in industry in the short term

Application Description Impact on energy Example ‘

Design and development

Generative
design

Generate and test various
designs or digital prototypes
using Al algorithms

@ High indirect: Products can
be designed to be more
energy efficient;
production can be
established faster for new
technologies

Improved design of gas
turbines, shortening
development time with
increased turbine
efficiency (Siemens, 2023)

Operational optimisation

Process
optimisation

Quality control

Predictive
maintenance

Digital twin

Supply chain
management

Holistic optimisation of the
production process through
collected data

Quality check, e.g. through
image recognition of input
and output materials and
products, leading to an
adjustment in the
production process

Early identification of
potential issues enabling
maintenance without
unplanned downtime

Virtual representation of a
process/factory allowing
simulation of new
configurations

Various applications of Al to
optimise the supply chain

@ High: Energy efficiency
gains through optimisation

Medium to @ High:
Energy consumption can
be optimised for the
desired output quality and
material needs can be
reduced

Medium: Equipment can
be operated more
efficiently

Medium: Accelerate
energy-efficient plant set-
ups and identify process
optimisation

@ Low: More efficient supply
chain

Improved fuel mix for
cement production
(CarbonRe, 2024)

Optimise scrap use for
steel production based on
quality (Fero Labs, 2024)

Detecting stress on
mechanical elements

Real-time simulation of
new plant configurations

Optimising demand, price
forecasting or transport

Automation and autonomy

Robots

Improved management of
robot automation; better
handling of variations in
items and processes; more
efficient working alongside
humans

@ Low direct: Minor gains
through efficient
movements;

Medium indirect: May lead
to faster product cycles
and lower costs for
manufactured goods

Fully automated smart
factories, robots

All of these applications affect the energy demand of industrial processes directly or
indirectly (Table 3.6). Optimising production processes often directly targets a reduction in
energy demand and therefore has the highest direct impact. However, other applications,
such as quality control, predictive maintenance and robots, can also have considerable
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impacts on energy demand, even though their primary goal is to improve product quality,
reduce downtime and increase productivity.

The digitalisation of production processes is a key enabler of Al applications in industry. Once
a plant’s performance is effectively measured through sensors, stored as accessible data, and
those data are well-structured and labelled, important productivity and energy gains can be
achieved. Al algorithms can be implemented to enhance the analysis, especially to convert
high volumes of collected data into useful information. If the digital infrastructure is in place,
there is usually a convincing business case for adopting Al.

The optimisation of production processes has the highest impact on energy demand

In the industry sector, the Al application with the highest direct impact on energy demand is
process optimisation. Energy use is usually one of the key parameters to be optimised to
reduce costs but often also to reach sustainability targets. Optimisation is generally based on
the collection of data through sensors in the process, which enables the application of Al
algorithms to a long history of collected data in order to either improve physical models or
detect inefficiencies. A key requirement is therefore the general digitalisation of the
production line, after which data need to be gathered for a certain period to be able to train
models. Following an increasing deployment of digitalisation in industry, widespread
adoption of existing Al applications could save around 8 exajoules (EJ) of industry energy
demand by 2035, equivalent to more than the total energy demand of Mexico today.

In energy-intensive industries, use cases suggest that Al can enable additional efficiency
savings in single-digit percentages. In these industries, digitalisation and automated control
of processes are widespread, and Al can be applied without significant extra effort, saving
around 2-6% of energy demand depending on the industry and use case.

Cost reductions through Al-enabled energy savings can help to increase the competitiveness
of energy-intensive industries. As the upfront investment is often low and payback periods
are short, this can be very attractive, especially in regions with higher energy costs. Such
costs in these industries account for a significant share of production costs, so energy savings
can have an important impact on reducing overall costs. We estimate that total energy
savings from process optimisation in energy-intensive industries through the widespread
adoption of known Al applications could be around 3 EJ by 2035 (Figure 3.9). Three-quarters
of these savings are in China and emerging market and developing economies, mainly
following the geographical distribution of these industries.

We have based our estimation of the potential on existing published use cases and
deployment rates (see methodology note in Box 3.1). For example, in the steel industry, the
second-largest steel producer, ArcelorMittal, has achieved 3% savings at a steel plant in
Luxembourg and is aiming to reach around 5% in a subsequent project in Belgium. In both
cases, Al algorithms are being used to assess and optimise the plant’s energy performance
in real time. The payback time of the project in Luxembourg is estimated to be less than
two years (ArcelorMittal, 2024). Similar savings have been achieved by use cases in the
cement industry. For example, in a joint project, HeidelbergMaterials, CarbonRE and ABB

Chapter 3 | Al for energy optimisation 137




managed to reduce the energy consumption of a plant in Czechia by 2.2%, leading to a 4.1%
reduction in fuel costs. Energy savings in further projects can reach around 5% (CarbonRe,
2024). Al algorithms can also help to substitute fossil fuels efficiently with alternative fuels
without a reduction in cement output quality. In the paper industry, case studies in Canada
and Morocco on optimising control systems and steam flows identified potential savings of
more than 5% (Batouta, Aouhassi and Mansouri, 2024; Nadim, et al. 2023).

Figure 3.9 = Energy savings in the Widespread Adoption Case from
optimising production processes, 2035
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Light industries show a higher relative savings potential as energy use is less optimised; in
heavy industries, Al can stillimprove energy efficiency and thereby also competitiveness

Note: EMDE = emerging market and developing economies.

Based on an evaluation of existing use cases, the potential savings from applying Al-based
process optimisation in non-energy-intensive industries are even higher. In many of these
industries, energy accounts for a lower share of total production costs, meaning energy use
is not always optimised. Additionally, the share of small and medium-sized enterprises is
higher, and these often have a lower degree of digitalisation due to the high level of
investment needed to digitalise production, lower access to digital infrastructure and lower
skill levels. Low levels of digitalisation are a barrier to harvesting the potential of Al in these
sectors.

The high potential impact of Al means the total energy savings it can achieve in non-energy-
intensive industries are higher than in energy-intensive industries, even though they account
for less than a third of total industrial energy demand. In the Widespread Adoption Case, the
scaling up of known Al applications could reduce energy demand in “other industry” by up
to 5.2 EJ by 2035, 70% more than in energy-intensive industries. These savings impact
electricity demand in particular, reducing it by almost 700 terawatt hours (TWh) globally, as
electricity accounts for around a third of energy demand in other industry. Advanced
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economies contribute slightly more to the savings for light industries than for energy-
intensive industries because light industries are projected to grow more in those regions and
because of their higher digitalisation rates and technological leadership (Box 3.4).

The difference between the Widespread Adoption Case and the full theoretical potential
underlines the importance of digitalisation: with full digitalisation, savings could reach
around 7.5 EJ, almost 50% higher than in the Widespread Adoption Case. The difference
between the two cases is also more significant for light industries than for energy-intensive
industries.

Box 3.4 = Which regions lead the way in the uptake of industrial Al?

Advanced economies currently have a competitive advantage in many of the
technologies required for digitalisation and automation. Across three core segments —
industrial automation, industrial software and robotics — the vast majority of leading
global companies are headquartered in advanced economies (Figure 3.10). Europe is
leading on automation and North America on industrial software, with each having more
than half the market share in their respective segments. Asia is clearly leading on robots,
hosting around two-thirds of the top 40 companies by market share.

Figure 3.10 = Top 40 companies by headquarter location and technology
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industrial software the revenues in 2022.

Sources: IEA analysis based on Control (2024); Statista (2022); 10T Analytics (2022).
The competitive advantage of existing market shares can be strengthened by company

strategies and also by policies to support the growth of industrial Al. Alongside clear
regulatory and legislative frameworks, the availability of models, data and digital
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infrastructure are important preconditions for industrial Al deployment. With the rise of
Al, there are also new players — not just start-ups but also software companies — entering
markets dominated by established companies in the industrial sector. Collaborations
between different players can be beneficial for leveraging expertise, such as in the case
of a cement plant in Czechia, with the start-up CarbonRe working with ABB (CarbonRe,
2024).

High-tech manufacturing contributes most to the savings potential in light industries. The
machinery, electronics and transport equipment sectors in particular are more digitalised
and have high overall optimisation potential through Al. Existing process optimisation often
currently focuses on single elements of the production process, but Al can help to optimise
the factory as a whole. This whole-of-factory optimisation can improve the right-sizing of
production components, such as drives and motors, and can reduce the use of heaters and
cooling in certain periods of the day. Use cases — such as the Siemens Erlangen factory, the
Nvidia factory in Guadalajara and the Schneider Electric factory in Wuxi — show energy
intensity improvements of 25-42% through the application of Al for process optimisation,
alongside other Al approaches such as digital twins or robotics (WEF, 2025a; Nvidia, 2024).

Applying Al to quality control to optimise material balance in production processes

Quality control of material flows through image recognition can play an important role in
industries where the quality of input and output materials is an important factor in the
production process. Better classification of input materials can enable optimisation of the
downstream process parameters, including energy use, while respecting output quality
constraints. Alternatively, the demand for input materials can decrease if their quality is
better controlled.

In the production of steel, aluminium and cement, recycled or alternative materials can be
used to displace primary production, which reduces energy demand (Figure 3.11). Al
solutions such as image recognition can measure the quality of these secondary materials to
maximise their use, helping to reach a higher share of secondary production, enhancing
circularity and acting as a key mitigation measure to reduce emissions intensities in these
sectors. For aluminium and steel, the availability of recycled scrap is limited globally and by
region, but Al can make its use more efficient. Increasing the scrap share by 5 percentage
points can save on average around 650 terajoules per average steel plant per year. For
cement, the availability of alternative materials that can replace clinker (the core cement
constituent) varies significantly by region, but quality control of these alternative materials
can enable equivalent cement performance at lower clinker-to-cement ratios. At a standard
cement plant producing 1 Mt per year, improving the clinker ratio by 5 percentage points
would reduce energy consumption by around 200 terajoules and emissions by around
40 000 t CO; per year.
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Figure 3.11 = Energy intensity of steel production depending on scrap use and
cement production depending on the clinker factor by region
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Optimising the use of materials in the production process, e.g. through increased
use of scrap and lower clinker factors, can reduce the required energy

These technologies have already been implemented by industry. Brazilian steelmaker
Gerdau, together with Fero Labs, reduced quality variations by 15% by optimising its material
balance. The quality and efficiency of its ferroalloy consumption were also improved,
reducing the need for upstream mining and processing of manganese, carbon, niobium and
vanadium (Fero Labs, 2024). For cement production, Al-based solutions are readily available
to change the input composition of cement. The solution developed by German startup
Alcemy reduced the clinker factor by around 3.5% on average, with even greater reductions
possible through the introduction of new cement compositions, while at the same time
reducing variations in output quality. This solution is now in use in more than one-third of all
German cement plants and in more than 30 plants worldwide (alcemy, 2024).

Indirect impact of Al applications in industry: Bringing down the cost of clean energy
technologies

The improvement of manufacturing processes with Al can have an indirect impact on the
energy sector by reducing the production costs of energy technologies. This is especially
relevant for clean energy technologies as it can improve their cost competitiveness. Clean
technology manufacturing has become a growth driver in the industry sector. Input materials
and components are the most important cost contributors to manufacturing processes
(Figure 3.12). EVs, heat pumps and wind turbine manufacturing have the highest input
material and component costs as a proportion of the production cost, at least 80%. Energy
costs are most relevant for solar PV, electrolyser and battery production.
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Figure 3.12 = Levelised cost of production for clean technology manufacturing

: : : : - W CAPEX
Solar PV I . Fixed OPEX
: : : : B Labour costs
Wind l - = Energy costs

: : : : . 1 Other component
Electrolysers I . and material costs

Heat pumps -
Electric l :
vehicles :

Batteries -

20% 40% 60% 80% 100%
IEA. CC BY 4.0.

Reducing material costs through Al shows the highest potential for EV and wind turbine
manufacturing, while optimising energy costs has a high potential for solar PV

Note: CAPEX = capital expenditure; OPEX = operating expenditure.
Source: IEA (2024b).

Material and energy costs are the most important components for solar PV manufacturing.
For energy costs, efficiency gains through Al of 10% — which appear possible for high-tech
industry according to a range of use cases — can reduce production costs on average by
around 3%, saving around USD 5 per kilowatt. However, these savings strongly depend on
the prevailing energy prices and can be higher in regions with higher prices. Upstream cost
reductions from Al can bring down costs for the most important input materials (aluminium,
glass and silicon), and generative design could enable lower-cost alternative materials.
Finally, quality control is a highly relevant application for solar PV manufacturing as cracks
can be identified in situ, which is particularly relevant for regions with high quality standards.
A similar approach applied to wind turbine manufacturing has led to a 20% reduction in
quality defects (WEF, 2025a).

Materials and components are clearly the most important determinants of cost for battery
electric vehicles. Around a third of the total costs are from batteries, where Al can help in
the short term to improve the manufacturing process and in the long term to innovate new
battery technologies (section 4.4.1). For many years, the use of robots has been growing in
final car assembly, but Al has further increased the precision of robots and can lead to cost
decreases in a market with tight margins and high throughputs.
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3.5.2 Al for transport

The transport sector accounts for over 55% of global oil demand and more than 20% of CO,
emissions in the energy sector. Road vehicles currently dominate global energy demand in
transport, accounting for 75% of the total, while aviation contributes over 10% and shipping
around 10%.

Al is already transforming the transport sector through applications such as traffic
management systems, route optimisation for various transport modes using real-time data
and predictive analytics, operation optimisation, predictive maintenance, autonomous
vehicles in restricted settings and contrail reduction (Table 3.7). These applications make Al
particularly well suited for large fleet operators, where Al integration can be streamlined and
applied at scale, such as in road freight, public transport and ride-hailing services. The same
holds true for large shipping and aviation companies, where fuel costs account for a
significant portion of their operating expenditures. The widespread adoption of existing Al
applications across transport modes could save over 4.5 EJ by 2035 — equivalent to the
energy consumption of around 120 million cars.

Table 3.7 = Potential applications of Al in the transport sector

Application Description Impact on energy Example ‘

Operational optimisation

Operational Enhanced operation @ High: Efficiency gains of Reduced idle times, optimised
efficiencies and management of 5-20%, depending on the routes, more efficient driver
vehicles mode of transport behaviour, vehicle maintenance
Capacity Increasing load Medium to @ High: In the European Union, 20% of
utilisation factors Inefficiencies can be reduced, road freight distances are

potentially considerably, by  travelled by empty vehicles, and

optimising capacity utilisation passenger vehicle occupancy is
particularly low during
commuting hours

Automation and autonomy

Autonomous  Reduce or remove @ Low to @ Medium: While Autonomous vehicles can
vehicles entirely the need for the long-term impact could promote eco-driving and
human operation of be significant, adoption is fundamentally alter business
vehicles currently limited by low models by enabling a shift from
penetration rates by the mid- private vehicle ownership to
2030s and fleet turnover ride-sharing
ratios

Al applications in road transport

Al-led optimisation is being applied in various aspects of road transport, including for route
optimisation, predictive maintenance and improved capacity utilisation. Urban logistics are
particularly well positioned to benefit from Al due to their complexity, lower predictability in
operations compared to fixed-route services and lower operational speeds compared to
long-haul transport, which in turn increase fuel consumption and vehicle wear. Al-enabled
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route optimisation can leverage real-time data and algorithms to optimise routes, using GPS,
traffic, weather and historical data for improved operational sustainability. Studies suggest
that Al-based route optimisation in road transport can reduce fuel consumption and
emissions by around 2-15% (WEF, 2025b; Miller, et al., 2024). For example, Greenplan, a DHL
Express-funded start-up in Germany, developed an Al tool that reduces fuel costs by up to
20% (DHL, 2020). Route optimisation can also help overcome infrastructure challenges,
including limited charging point availability for electric trucks, by reducing charging needs or
optimising routes around infrastructure availability.

Predictive maintenance for freight fleets is another area where Al can help reduce energy
use and costs. Al applications can monitor asset health, forecast failures and optimise
maintenance, detecting issues like engine wear or tyre degradation to prevent costly repairs
and improve efficiency. For instance, Walmart uses Al for predictive maintenance to improve
fuel efficiency by 5-7% and reduce maintenance costs (Fleetpoint, 2025). Similar to route
optimisation, Al-based predictive maintenance also supports EV growth. By predicting EV
battery lifespans with up to 95% accuracy, Al can help optimise battery charging and prevent
degradation, which is essential for electric truck fleets. When combined with battery
swapping technology, it can optimise the performance and lifetimes of large-scale electric
truck fleets and provide grid flexibility at battery swapping stations.

Furthermore, Al can improve capacity utilisation in road freight by predicting demand,
optimising loading and suggesting routes to minimise empty space. For example, if smart
capacity utilisation strategies were implemented across the US trucking industry, empty
capacity could be reduced by up to 50%. Al-powered capacity utilisation solutions have the
potential to cut around 5% of global road freight emissions (WEF, 2025b). Al solutions can
also reduce fuel demand by optimising truck schedules to minimise idle time.

Certain driving styles, such as aggressive acceleration or braking, can increase fuel
consumption by up to 23% in trucks (Mohammadnazar, Khattak and Khattak, 2024). Al can
use real-time data and machine learning to monitor driving behaviour and external factors,
offering feedback to optimise driving performance and reduce fuel consumption. As such,
eco-driving could reduce fuel use by 2-10% (WEF, 2025b). Electric trucks and other modern
vehicles with software capabilities are ideally positioned to benefit.

Some vehicle types are better-suited to benefit from Al integration, with autonomous trucks
being an ideal candidate for enhanced Al-driven demand reduction in road freight. They can
fully integrate Al solutions for operational optimisation and capacity utilisation. For example,
TuSimple, a self-driving start-up, demonstrated that autonomous trucks can reduce fuel
consumption by 10-20%, with the greatest gains occurring at lower speeds (FreightWaves,
2019).

The proliferation of Al applications in the road freight sector has the potential to reduce
energy demand from heavy-duty trucks by over 1 EJ by 2035 in the Widespread Adoption
Case. Light commercial vehicles could also benefit from Al-enabled efficiencies, reducing
energy demand by approximately 0.5 EJ (Figure 3.13). Combined, these achieve energy
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demand reductions that are around 4% of total road freight energy demand in 2035 in a
pathway that accounts for today’s policy settings. The full theoretical potential, should
barriers to Al's implementation be overcome, could see total Al-driven demand reductions
in the road freight sector of over 3 EJ by 2035 — equivalent to the total energy demand of
Argentina today.

Figure 3.13 = Energy savings in road freight in the Widespread Adoption Case,
2035
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By 2035 Al-driven reductions in energy demand for road freight could reach over 1.5 EJ,
or 4% of total road freight energy demand in 2035 under today’s policy settings

Beyond road freight, Al could revolutionise how passengers meet their mobility needs. Al is
already being implemented in public transport (e.g. Transport for London uses Al for traffic
management) (Transport for London, 2021) and is well positioned to play a key role in the
future, enabling smart scheduling, demand prediction and better resource allocation,
reducing unnecessary trips and potentially reducing fuel consumption by 12-20% (Miller, et
al., 2024). Similar to commercial freight fleets, Al can improve public transport fleets with
predictive maintenance, enhancing efficiency and vehicle lifespans and enhancing the
benefits of electrification for bus operators.

For passenger cars, Al-enabled eco-driving presents significant potential, offering up to 20%
reduction in fuel consumption (Iglinski and Babiak, 2017). However, this is only achievable
when vehicles are equipped with intelligent software that provides real-time feedback to
drivers.

Autonomous vehicles (AVs) offer the greatest untapped potential in the passenger car
segment, although with a high degree of uncertainty. AVs optimise fuel consumption through
eco-driving algorithms, reduced idling, smarter routing and predictive maintenance, and by
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co-ordinating with infrastructure and other vehicles. Studies suggest that optimised AVs can
cut fuel consumption by over 20% compared to conventional cars (University of Michigan,
2024). They can also boost occupancy rates through shared mobility, especially for
commuting trips, potentially cutting urban car ownership by 20-40% (Zhang, Guhathakurta
and Khalil, 2018; Henderson and Spencer, 2016). Autonomous ride-hailing is already growing,
with Waymo, an autonomous taxi company, now matching Lyft’s 22% market share in San
Francisco, having completed a total of over 5 million driverless trips — 4 million in 2024 alone
(The Driverless Digest, 2024; Waymo, 2024). However, while AVs can lead to energy savings
for individual rides, they may significantly raise road transport energy demand in aggregate
if service demand is boosted by travel cost reductions and improvements in productivity and
driving comfort (Bhat, Asmussen and Mondal, 2022). This section does not consider the
potential for AVs to increase transport service demand, but planning may be needed to
mitigate rebound effects (see Box 3.5).

Box 3.5 > How Al could enable smart cities

Al can be especially useful in complex transport environments like cities. Sensory
networks in urban areas collect data on passenger numbers, congestion and key routes
for charging and refuelling. For instance, the European Union is working on Al-driven
traffic management to prevent idling in traffic jams (ERTICO, 2024) and port automation
for truck platooning and Al-supported living labs (SGLOGINNOV, 2024).2

In urban design, Al helps city managers create predictive models for various scenarios,
such as optimising waste collection routes and anticipating autonomous vehicle services.
For instance, the Google Environmental Insights Explorer enhances fuel-efficient routing
and analyses energy consumption data in cities worldwide (Google, 2025). Al can also
accelerate design timelines for urban infrastructure upgrades, such as metro expansions,
cycle lanes, bus route optimisation and public transport. For example, a Berlin case study
used Al-driven methods to identify key locations for bike sharing and upgraded cycling
infrastructure (Kaiser, Klein and Kaack, 2024). Setting sustainability and safety criteria in
the design of automated system rules ensures pedestrians and vulnerable users are
prioritised in these smart cities.

Al also enhances urban transport efficiency by using big data. For example, a German
case study showed that precise roadway data and spatial planning in urban spaces could
reduce material intensity and associated greenhouse gas emissions significantly by
suggesting ideal locations for optimal access to services. Providing location-specific
recommendations at the city and street levels reduces the need for car use, heavy
infrastructure and material consumption (Milojevic-Dupont and Creutzig, 2021). Detailed

2The living labs are testbeds for interconnected freight hubs. Under the 5G-LOGINNOV project this comprises
a range of port-driven technological and societal innovations, tailored to realise objectives including
automation for ports, generation of data on trucking and shipping emissions, automated truck platooning and
the involvement of high-tech SMEs.
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datasets on routes and interactions between taxi drivers can enable more efficient ride-
hailing services, lowering emissions by optimising shared taxi rides and reducing the need
for individual cars. Demand prediction and smart scheduling of public transport could
lead to significant energy efficiency gains using Al-powered data analysis (Miller, et al.,
2024). An overview of the opportunities for optimised energy end-uses through Al in
cities is shown in Figure 3.14.

Figure 3.14 = Al applications in transport
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Al can deliver optimisation and improved operations across multiple end-uses,
especially for passenger and freight urban mobility

However, it is important to note that Al’s energy demand outcomes can be mixed. For
example, automated vehicles may increase demand for ride-hailing, displacing journeys
from public transport to private vehicles, which could result in higher energy
consumption and more road space requirements (IPCC, 2022a). Al applications in urban
areas must be dynamic, adaptable and transparent to mitigate adverse energy rebound
effects and ensure long-term infrastructure sustainability.
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The current rise of EVs paves the way for potential synergies with AV growth as electrification
enhances digitalisation in vehicles, thus enabling Al integration. EVs, with more drive-by-wire
components, simplify vehicle automation. Although costlier upfront, they offer lower fuel
and maintenance costs, making them ideal for running high annual mileages, as in shared
autonomous fleets. A number of companies, such as BYD, Renault, Tesla and Hyundai
(partnering with Waymo), are investing in autonomous-ready EVs, with around
10 automakers currently working on advanced level autonomous driving systems. Al-
integrated AVs also hold considerable potential for grid security support. Shared, automated
and electric vehicle fleets can optimise charging infrastructure use, accelerate investment
returns on infrastructure and enhance vehicle-to-grid integration, benefiting both grid
stability and fleet operators (see section 3.5.3). Furthermore, these fleets are managed by
fleet operators who can ensure that the vehicles are strategically positioned to meet
immediate transport demands as well as longer-duration charging and vehicle-to-grid
operations, while co-ordinated fleet dispatch minimises idle time.

Figure 3.15 = Energy savings in passenger vehicles in the Widespread
Adoption Case, 2035
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Al-driven reductions in energy demand for passenger vehicles reach over 1.5 EJ by 2035,
accounting for over 3% of total road passenger demand under today'’s policy settings

Al applications for passenger cars could cut energy demand by nearly 1.5 EJ in 2035 in the
Widespread Adoption Case (see Box 3.1 for the methodology), with a large proportion of the
savings coming from operational optimisation, mainly eco-driving. Al-driven efficiencies,
such as smart scheduling and demand prediction, could also reduce bus energy demand by
close to 0.3 EJ — over 5% of the total energy demand in road public transport in 2035 in a
pathway consistent with today’s policy settings (Figure 3.15). However, if Al were integrated
into the passenger transport system at full scale, with barriers to deployment overcome, the
technical potential energy demand reduction could reach 7 EJ by 2035.
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Al applications in air, shipping and rail

In aviation, Al-driven flight route optimisation systems show the potential to reduce fuel
consumption by 5-12% per flight (Alaska Airlines, 2024; McKinsey & Company, 2017). In
shipping, Al-based navigation platforms with voyage optimisation tools can reduce fuel
consumption by up to 10% by minimising extreme manoeuvres and travel distances (Orca Al,
2024). They can also benefit shipping operations by taking advantage of favourable currents
and winds. Maersk, for example, has utilised such Al-based tools since 2010 to map out
optimal routes, factoring in real-time data on weather conditions, port congestion and fuel
efficiency (Medium, 2024). Al-based autonomous navigation systems can reduce fuel
consumption by up to 15% (Miller, et al., 2024). Al-powered energy optimisation systems
enabled Carnival Corporation, the world’s largest cruise line operator, to achieve a 5%
reduction in fuel consumption across its fleet (Sailor Speaks, 2024).

Rail is the most electrified transport mode, with over two-thirds of activity currently
electrified, and yet Al may offer even greater energy savings. Al-based operation
optimisation systems, including routing and predictive maintenance tools, can reduce rail
energy demand by up to 20%. VIA Rail Canada, SNCF and Deutsche Bahn use Al-enabled eco-
driving systems to reduce energy consumption, with expected reductions of 10-15% (UIC,
2024). Autonomous trains with GoA3-level automation can achieve even higher fuel
consumption reductions by increasing system capacity and optimising network operations.

Figure 3.16 = Energy savings in non-road transport modes in the Widespread
Adoption Case, 2035
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With the adoption of known Al applications, energy demand savings for non-road modes
could reach around 1.5 EJ by 2035, with aviation accounting for half of these

In the Widespread Adoption Case, energy demand reductions in non-road modes could reach
around 1.5 EJ by 2035, with aviation accounting for half of these savings. In rail, the high level
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of system electrification ensures that energy savings are close to 8% of total rail energy
demand in 2035 in a pathway consistent with today’s policy settings (Figure 3.16). If the full
theoretical potential of existing Al applications were realised, energy savings by 2035 could
reach nearly 4 EJ, equivalent to the energy demand of the transport sector in Brazil today.

Box 3.6 = How Al could reduce contrails

Contrails, or condensation trails, form on the basis of several factors, including ambient
temperature, humidity and water vapour content, and the aircraft’s engine efficiency and
the energy content of the fuel (IATA, 2024). Clouds created by contrails may account for
nearly 60% of aviation’s global warming effect, although the exact impact remains
uncertain (IPCC, 2022b). While contrails usually disappear within seconds, they can
persist if aircraft fly through regions with sufficient water vapour to form ice clouds but
with insufficient solid particles for condensation.

Contrail creation is highly concentrated, with 3% of global flights accounting for 80% of
contrail warming in 2019 (Teoh, et al., 2024). By identifying the regions of extremely cold
and humid air, aircraft can be rerouted to reduce contrail creation. Al offers a scalable
and cost-effective solution for achieving this. As contrail navigational avoidance is an
operational change, it does not require capital costs for equipment modifications and can
be implemented quickly. Since contrails form in ice-saturated air below a critical
temperature threshold, they can be avoided by altering flight paths. Al can predict when
and where contrails are likely to form by analysing weather, satellite and flight data,
enabling airlines to optimise routes by redirecting aircraft to different altitudes. Al can
predict when and where contrails are likely to form by analysing weather, satellite and
flight data, enabling airlines to optimise routes by redirecting aircraft to different
altitudes (The Guardian, 2023).

American Airlines tested Google’s Al-driven predictions to avoid contrail-prone routes,
reducing contrails by 54% at a cost of USD 5-25/tCO,-eq. Flights that avoided contrails
consumed an additional 2% fuel. However, since only a fraction of flights produce
contrails, the overall increase in fuel consumption across an airline’s fleet would be less
than 0.5% (Google, 2023). Another study developed an algorithm to detect contrails using
satellite images, air traffic data and meteorological data, helping to identify aircraft
responsible for contrail formation (Riggi-Carrolo, et al., 2024). Reducing contrails is
crucial and should be paired with fuel switching, efficiency gains and demand
management to cut aviation CO, emissions.

3.5.3 Al for buildings

Despite the transformational growth of digital technologies in recent decades, buildings have
largely continued to be constructed and used without benefiting from such technologies.
Buildings have remained passive actors in the energy system, often resulting in energy
wastage and suboptimal indoor environments. However, several encouraging trends are
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emerging that could change this status quo. First, the energy performance of new buildings
and existing commercial buildings has seen steady improvement in the past decade,
including through greater uptake of digital solutions. Second, retrofit activity has also
increased, although largely in advanced economies. Third, flexible electricity tariffs are being
rolled out in many parts of the world, providing the right incentives for consumers to install
intelligent systems. Finally, the electrification of heating has been accelerating, which offers
much greater system flexibility and controllability. To complement these trends, new Al-led
solutions for buildings are emerging that could help make building construction and
operation more energy efficient, more cost-effective and user-friendly (Table 3.8).

Table 3.8 > Potential applications of Al in buildings

Application Description Impact on energy Example

Design and development

Design and Optimise design, materials @ Low: Reduces heating  Better material choice,

construction and construction and/or cooling needs  lower heat transfer to
techniques for more due to improved environment, lower
efficient buildings insulation construction costs

Operational optimisation

Efficient Use of sensor data from @ High: Reduces energy  Optimised HVAC
management of digitalised buildings to consumption; supports operation through
technical buildings gain efficiencies; affordability; ensures  learning the building
systems predictive maintenance of user comfort physics and forecasting
HVAC equipment @ Low: Reduces occupancy and usage

downtime; improves
performance of

systems
Unlocked potential Optimise energy use in Medium: Supports Active management of
for demand flexibility real time by better renewables electricity consumption in
assessing energy needs in integration and peak  thousands of buildings,
tandem with grid management; reduces providing flexibility to the
capabilities household energy bills  system while learning
individual building
behaviour

Note: HVAC = heating, ventilation and air conditioning.

Al in operation: Efficient management of technical building systems

Building energy management systems (BEMS) have been around for decades, used mainly in
commercial buildings and large residential developments. As the computational power of
these systems has increased over time, BEMS have gained accuracy in optimising energy
consumption based on weather forecasts and occupancy data, among other factors. Al is
now enabling a new generation of BEMS that surpass the performance of legacy systems.
Al-powered BEMS can process a far greater number of data points and undergo regular
retraining, ensuring heating, ventilation and air conditioning (HVAC) controls are calibrated
more frequently to better pre-empt user needs. Machine learning algorithms can use real-
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time weather, occupancy and indoor temperature data to map the physical properties of a
building, which in turn enables Al models to discover thermodynamic equations that most
accurately forecast the future needs of occupants. Since Al-enhanced BEMS rely on cloud-
computing resources, these systems can make better use of external data points, such as
electricity prices, grid frequency, weather forecasts, solar irradiance, outdoor air quality and
local traffic density. All of this allows Al-enabled BEMS to deliver more comfortable energy
services with less energy and lower costs.

In Sweden, a municipal real estate company managing over 600 schools switched from
conventional BEMS to more sophisticated Al-enhanced BEMS, which resulted in around 10%
electricity savings (Paccou and Roussilhe, 2024). The new system uses data from nearly
10 000 sensors throughout the school network, before complementing this database with
weather data, energy tariffs and social data. An Al model is then used to create a digital twin
of each building and to determine the optimal HVAC control set points every 15 minutes. In
India, a multinational IT services and consulting company introduced Al-powered BEMS in a
campus that accommodates over 30 000 people in a variety of buildings, including offices,
food courts, car parks, a hotel and a data centre (Infosys, 2024). This highly efficient campus
was already Leadership in Energy and Environmental Design Platinum certified prior to the
intervention. Despite this, Al-powered BEMS achieved a further 7% increase in energy
efficiency.

In some cases, substantial savings have not required investment in new hardware. A
technology manufacturer in Singapore hired an external service provider to optimise the
existing BEMS used to manage its 27 000-square metre regional headquarters. Using
one year of historical data from the existing BEMS, an Al model optimised controls and
identified savings of 23% in cooling energy use (Industrial Analytics, 2024). Al algorithms
excel at detecting unusual patterns in buildings data and adapting controls accordingly,
which can lead to exceptionally high energy savings in buildings that experience extreme
weather conditions. When Al-enhanced BEMS was introduced in the Monte Rosa Hut, sitting
at an altitude of 2 883 metres in the Swiss Alps, a 30% reduction in energy consumption was
attained (Siemens, 2025).

While full BEMS — covering HVAC, lighting, electrics, plug loads, shading and on-site power
generation from a single control interface — are only used in a small share of commercial
buildings, network-enabled HVAC controls that provide similar functionalities are
commonplace in the sector. In advanced economies, over half of all commercial floorspace
is equipped with automated HVAC controls and can benefit from Al solutions with minimal
investment in additional hardware. Meanwhile, only a small share of residential buildings are
in the same position (Figure 3.17). This reflects not only the higher level of digitalisation and
turnover of HVAC systems in commercial buildings but also their higher level of
electrification. Technologies powered by electricity, such as air conditioners and heat pumps,
are far more likely to include automated controls compared to HVAC systems powered by
fossil fuels.
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Figure 3.17 = Share of floorspace with digitalised HVAC, Widespread Adoption
Case and theoretical potential, 2024, 2035
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In the Widespread Adoption Case, Al solutions are used to optimise operations in buildings
that use digitalised, electrically powered HVAC systems, based on current digitalisation and
electrification trends. The theoretical potential remains far greater, demonstrating what
could be achieved if the vast majority of electrically powered HVAC systems were network-
enabled. When assessing the theoretical potential, electrification is maintained at levels
achieved in a pathway incorporating today’s policy settings. It is this electrification rate that
limits the potential for Al-ready floorspace in advanced economies more than any other
factor. It is also the reason why advanced economies see relatively little growth in Al-ready
commercial floorspace compared to China and other emerging market and developing
economies, where greater expansion is driven by increased cooling access.

Although electrification trends are more positive in China and other emerging market and
developing economies, the potential for digitalisation in these countries is held back by the
prominence of conventional room air conditioners that lack automated controls and cannot
be connected to the Internet. Lack of access to cooling services further reduces this potential
in emerging market and developing economies outside China. In 2035, only 38% of
floorspace in these regions benefits from cooling, compared with 46% in advanced
economies and 56% in China.

These countries are also characterised by lower rates of digitalisation in buildings today. For
example, the majority of buildings in advanced economies and China are equipped with
smart meters, whereas coverage in emerging market and developing economies typically
ranges between 5% and 20%. Consumers in these countries are also less likely to purchase

Chapter 3 | Al for energy optimisation 153




highly efficient air conditioner models that typically include network-enabled scheduling
options. Such air conditioners make up less than a half of sales in these markets, compared
with over 90% of sales in advanced economies and China.

Based on current digitalisation trends, the widespread use of Al in buildings saves more than
300 TWh in global electricity demand in 2035, equivalent to 5% of the total consumption of
electricity for heating and cooling. Commercial buildings in advanced economies and China
are responsible for the bulk of these savings. If the full theoretical potential were exploited,
savings rise to nearly 500 TWh thanks to the greater role of digitalised residential buildings,
especially in emerging market and developing economies (Figure 3.18).

Figure 3.18 = Al-enabled energy savings in buildings, Widespread Adoption
Case and theoretical potential, 2035
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Al contributes to energy savings mostly in non-residential buildings in advanced
economies by 2035, but the theoretical potential is much larger

Note: EMDE = emerging market and developing economies.

The theoretical potential of Al can be achieved by ensuring that all new HVAC systems sold
are network-enabled, and by creating incentives for consumers and companies to
complement existing electrified systems with network-enabled hardware. Hardware
requirements for transforming conventionally electrified buildings into digitalised buildings
vary substantially, depending primarily on the intended results. At the bare minimum, a
gateway or a “Wi-Fi module” is needed to connect HVAC controls to the Internet
(Figure 3.19). Beyond that, the number of control sensors installed throughout the property
determines just how effective energy optimisation software will be. A wider network of
sensors provides more accurate data on user behaviour as well as monitoring and control
over individual systems. For instance, software operating a home with only two sensors
would fail to register when a user opens a window in a third room or enters home from the
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garage. It would also fail to detect when one of the devices is not performing as expected. Al
algorithms excel at fault detection and diagnosis. In one comparative study, Al-enhanced
fault detection and diagnosis software showed a 30% improvement in prediction accuracy
compared with conventional tools. Costs of Internet of Things sensors have seen a steady
decrease over time, falling by more than 50% globally between 2010 and 2020, depending
on the market. Once a gateway is set up, the marginal cost of installing additional sensors is
rather limited. In some markets, companies offering demand flexibility services will cover the
cost of installing gateways and sensors for new customers.

Figure 3.19 = Al applications in buildings that lack network-enabled HVAC
controls
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Al applications in buildings can enable energy savings even with the
deployment of only a limited number of connected devices and sensors

Al in operation: Unlocking potential for demand flexibility

Buildings consume half of the electricity generated globally, but they remain largely passive
consumers with little ability to adjust in response to grid conditions or price signals. As a
result, they place a substantial burden on power systems: the sector contributes to 70% of
peak electricity demand on average in advanced economies, and this share is set to increase
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in the near future with the electrification of heat, increased cooling access and EV charging.
Consumption patterns in buildings are particularly misaligned with renewable generation,
and in the early evening, electricity demand surges to levels as high as twice the night-time
average. During heat or cold waves, consumption from buildings can become a major threat
to grid stability.

Existing projects already tap into the flexibility potential of buildings, but Al can unlock new
opportunities with increased accuracy, more effective grid integration and greater scale.
With its capacity to learn complex patterns in large-scale datasets, machine learning
algorithms can understand individual household consumption behaviour, aggregate
thousands of buildings into a virtual resource and deliver robust and reliable flexibility
services. Al unlocks new potential by learning from individuals but operating as a system: as
with a hive, the response robustness comes from the averaging of individual uncertainty
within the group.

This potential can also be deployed for individual large-scale buildings. Where existing
systems require large sets of sensors combined with strong configuration to provide
flexibility services, machine learning algorithms can effectively co-ordinate EV chargers,
HVAC equipment and on-site generation with real-time grid status and electricity prices.

In residential buildings, Voltalis provides households with a free device equipped with a
smart switch, a sensor and a gateway, allowing its Al-supported remote platform to optimise
the operation of electric heaters based on market conditions, ultimately reducing household
electricity bills without compromising comfort (Voltalis, 2025). This case study shows that
the rollout of relatively simple hardware can be scaled quickly without requiring upfront
investment from the consumer. Similarly, in the United States, over 15 million households
are already benefiting from smart thermostats, such as those enabled by Nest. These services
leverage Al to adjust heating and cooling in response to grid signals, helping to lower energy
consumption and costs, although a Nest thermostat is required to partake in the programme.

Despite the growing availability of automated charging features, they remain heavily under-
utilised. Most EV charging point manufacturers offer scheduling options, and over half of the
United Kingdom’s EV chargers are now smart. Yet, most UK households still charge their EVs
upon arriving home — coinciding with peak electricity demand. Additionally, over two-thirds
of UK EV owners do not subscribe to an EV tariff or a time-of-use tariff (DESNZ, 2024). Cloud-
based services powered by Al algorithms can address this without any installation costs.
These solutions, often hardware-agnostic and compatible with Open Charge Point Protocol
chargers, optimise charging based on grid conditions. Further efficiencies can be gained by
integrating building sensors that feed Al algorithms with data to better forecast user
behaviour.

We estimate that the adoption of Al in digitalised buildings has the potential to deliver
significant flexibility capacity. In the Widespread Adoption Case, buildings add more than
400 GW of flexible capacity to the electricity system, equivalent to 10% of peak demand on
average. If the full theoretical potential is exploited, demand flexibility from buildings
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reaches 700 GW, equally distributed between space and water heating, cooling and EV
charging (Figure 3.20). That capacity can be operated to support power system needs, such
as peak management, saving on expensive fuel, avoiding peak electricity capacity additions
and supporting renewables integration. Where the building’s thermal inertia could act as a
constraint on multiple-hour flexibility, Al can co-ordinate across the set of buildings and bring
reliable flexibility services over long durations with no significant temperature variation.

Figure 3.20 = Al-enabled flexible demand capacity by end-use and share of

peak demand, 2035
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Al unlocks new potential for smarter, self-aware buildings
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Notes: AE = advanced economies; EMDE = emerging market and developing economies. Heating includes
water heating.

Al in building design and construction

Al is transforming the construction industry and building design by enhancing efficiency and
accuracy, reducing costs and fostering innovation across various project design phases.

Al facilitates the optimised selection of passive design strategies, such as daylighting,
ventilation and shading systems, and low-carbon building materials to reduce a building’s
energy loads and embodied carbon while still ensuring high levels of thermal comfort for
building occupants. These early-stage optimisations can reduce the need for costly post-
construction modifications and achieve up to an 85% reduction in a future building’s energy
consumption (Manmatharasan, Bitsuamlak and Grolinger, 2025).

Natural language processing enables Al systems to interpret and extract relevant information
from a large number of construction project documents, while machine learning algorithms
can process extensive data from building sensors on past energy usage and environmental
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conditions, uncovering patterns, relationships and best practices that might be missed by
human analysis (Szalai, et al., 2023). The following are some examples:

m  Al-enhanced surrogate modelling can be used instead of computationally expensive
physics-based simulations, with machine learning models that can quickly predict
building performance. These models can help optimise choices of construction material,
building size and orientation to minimise heating and cooling loads (Manmatharasan,
Bitsuamlak and Grolinger, 2025).

m  Deep reinforcement learning Al frameworks are able to iteratively improve building
envelope configurations. These models can be trained on past weather data to improve
design choices and achieve higher performance of building envelopes, taking into
account a variety of parameters, including climatic conditions and the energy needs of
occupants. The results from a study on the deployment of such models demonstrated a
reduction in building energy usage of up to 20% (Karimi, et al., 2024).

m  Al-driven generative design tools, such as those integrated with Autodesk’s platforms,
allow architects to input specific design goals and constraints, including requirements
for a certain level of building energy performance, embodied carbon and resilience. The
Al tools are able to explore numerous design variations to identify optimal solutions that
balance aesthetics, functionality and sustainability (Soto, 2024). This generative design
approach can lead to cost savings of up to 15% in materials and labour (Market.us Scoop,
2024).

By analysing data and patterns quickly and effectively, Al algorithms can also help identify
potential issues in buildings design, ensuring that the resulting building aligns with project
requirements and specifications. This can help facilitate compliance with buildings
regulations and speed up and enhance the accuracy of building energy performance
assessments, which is crucial for energy audits and building energy certification.

Al can help tackle cost overruns in the construction industry, where it is estimated that about
75% of projects exceed budgets, with an average 15% cost increase due to mid-project
changes (Abdelalim, et al., 2025). As projects grow in complexity, managing costs effectively
becomes more challenging. Al-driven predictive analytics and optimisation models can
identify risks early, improve budget forecasting and streamline decision making, ensuring
projects stay on time, are within budget and meet quality standards. Al-powered tools can
also help reduce costs in a building’s design phase, while automation of repetitive tasks
reduces labour costs (Usman, 2024).

Al can also help reduce wastage of construction materials, thereby reducing embodied
carbon emissions from buildings. Estimates indicate that up to 50% of material waste can be
avoided using Al tools (Usman, 2024).

Real-life projects already demonstrate the benefits of Al tools for more sustainable building
design and construction:
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B The Shanghai West Bund Al Tower incorporated Al-driven simulation technology early
in its design process to predict wind flows and optimise building energy performance.
The building’s aerodynamic design makes use of passive strategies, such as natural
ventilation, daylighting, sun-shading vertical fins and operable windows, reducing
reliance on mechanical cooling and artificial lighting (ArchDaily, 2023). The building is
expected to achieve energy savings of over 35% compared to a similar conventional
building (WSP, 2025).

B InAustralia, Al-integrated 3D printing is being pioneered to construct homes rapidly and
cost-effectively. The first 3D-printed multi-storey house in the southern hemisphere was
built in a Melbourne suburb in just five weeks — a fraction of the time that would be
required for traditional construction methods (Blair, 2025). Al-based reinforcement
learning algorithms were used to maintain the quality of each printed layer, ensuring
not only aesthetic appeal but also structural integrity, optimising layer placement for
durability and accuracy (Luyten, 2025).

® Al models were utilised to generate concrete mixes that reduce cement usage without
compromising the material’s strength in the construction of Meta’s data centre in
DeKalb, lllinois (Miller, et al., 2022). The Al-designed concrete mixes demonstrated up
to 40% lower carbon emissions in relation to conventional concrete (Ge, et al., 2022).

3.6 Al for energy system resilience

Resilience in energy systems underpins energy security and affordability. A significant risk to
energy system resilience lies in the impacts of weather conditions. Both demand and supply
fluctuate as weather systems sweep across the globe, and the effects are multiple and varied.
Temperature variations affect energy demand, such as heating and cooling demand in
buildings or the efficiencies of industrial processes and transport. Energy supply is affected
not just by sources directly dependent on meteorological conditions — including solar and
wind power — but also by factors such as the availability of water for power stations or grid
network efficiencies being impacted by temperatures.

Accurate weather forecasts and the analysis of changing weather patterns in a warming
world are essential to optimise the operation (see section 3.4), planning and resilience of
energy systems. Al has recently been applied to weather forecasting, with promising results.
In 2025, the European Centre for Medium-Range Weather Forecasts (ECMWF) launched its
Artificial Intelligence Forecasting System, which runs multiple times daily and generates
public forecast data. Most Al approaches rely on physics-based methods to generate
reanalysis data from weather observations for training, meaning that Al methods will
probably complement rather than replace physics-based numerical weather prediction in the
future.
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Key benefits that Al could bring to weather forecasting include the following:

®  Reduced computational demand: Standard numerical weather prediction is extremely
expensive computationally, with a typical 10-day forecast runtime of several hours on a
high-performance facility. By contrast, Al forecasts can be generated in minutes on a
single graphics processing unit. This has implications for energy use: the Artificial
Intelligence Forecasting System model uses about one-thousandth of the electricity to
run a single forecast than its numerical weather prediction equivalent (ECMWF, 2025).3

m  Better representation of uncertainty: Modern numerical weather prediction forecasts
are typically built from ensembles that present a range of future weather possibilities.
Al could be used to increase the number of ensemble members, better representing
high-risk, low-probability events such as extreme weather.

m  Better local forecasting: A key challenge for traditional forecasting methods is the
increase in computational demand from higher spatial resolution. Al could be used to
combine local observations with ensemble outputs from global forecasts to generate
better local forecasts (Harris, et al., 2022).

Progress on using Al for climate modelling has been slower than for weather forecasting,
largely due to limited training data and the “out-of-sample” nature of climate change, which
creates changes to weather patterns that are absent from historical records. However, there
has been progress in applying Al to the development of climate “emulators”, which can
shrink calculation times from months or even years for a single scenario using physics-based
models to minutes (Balaji, et al., 2017; Watt-Meyer, et al., 2024). Al has also been used to
downscale the outputs of physics-based models from around 100 km to 12-25 km, as well as
to better understand extreme climate-related events (Rampal, et al., 2024; Camps-Valls, et
al., 2025).

Energy system resilience and recovery

A better understanding of how extreme weather events play out at the local level can
improve the resilience of energy systems, reducing rebuild costs and the economic losses
associated with blackouts, particularly in emerging market and developing economies (Hao,
et al., 2023). Al-based tools have been developed to enable the spatial downscaling of
climate model outputs and satellite data in order to generate climate risk indicators related
to flooding, wildfires, droughts, wind and rainfall. These tools can achieve spatial resolutions
ranging from 25 km to less than 100 metres (Mitiga Solutions, 2025; Jupiter Intelligence,
2025).

Al is well suited to help at the different stages of extreme weather management. An
improved representation of extreme weather events in conjunction with data harvested
from drones, satellites and sensors can enable Al to pinpoint vulnerabilities in energy

3 This does not include electricity use for training the Al model, which can be significant: for example, training
Google DeepMind GraphCast model takes about four weeks on 32 Cloud TPU devices (Lam, et al., 2023).
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systems, identify necessary reinforcements, provide early warnings and optimise the damage
appraisal of assets.

Machine learning platforms are being developed that use short-term weather forecasts to
anticipate potential outages caused by extreme weather events. For example, Enedis, the
distribution system operator in France, is using a machine learning tool to predict outages
on the distribution grid caused by windstorms with an accuracy of 90% (ENEDIS, 2024).

Al can help build better early warning systems. For instance, Pano Al uses Al with ultra-high-
definition cameras and geosatellite data to detect wildfires. This system is already deployed
on Xcel Energy’s infrastructure in the United States. Al-equipped miniature cube satellites
have also been developed that can detect fires 500 times faster than traditional ground
methods (Lu, et al., 2024); Google’s new FireSat project aims to detect wildfires measuring
just 5 metres by 5 metres in under 20 minutes. Beyond detection, Al also outperforms
traditional models for wildfire forecasting, spread prediction and the prevention of fires
started by faults in electricity grids (Oulad, Mousannif and Al Moatassime, 2019; Huot, et al.,
2022; PG&E, 2024).

Floods can severely damage energy infrastructure and can cause widespread and prolonged
power outages when substations are inundated. Faster Al-enabled forecasting supports
timely protective measures. For example, Google has developed an Al-based tool utilising
satellite imagery and short-term weather forecasts to provide riverine flood predictions up
to sevendays in advance, outperforming current state-of-the-art modelling systems
(Nearing, et al., 2024). This tool may be especially useful in emerging market and developing
economies by enabling better prediction of water levels in rivers where monitoring is scarce
or absent.

Alis increasingly being used for asset inspection and damage detection after weather events,
relying on drones (including autonomous drones), satellites and fixed cameras imagery. A
growing number of companies offer these solutions for energy infrastructure, including
power grids and solar plants, and report significant inspection cost reductions. Utilities
worldwide are adopting these technologies, such as Florida Power & Light in the
United States, National Grid in the United Kingdom and Enedis in France. These tools could
prove to be particularly beneficial to gain access to remote zones, especially in emerging
market and developing economies. For example, the Vietnamese TSO, the National Power
Transmission Corporation, recently deployed drones and fixed cameras coupled with Al to
conduct transmission network inspections. It drastically cut the time needed per inspection
from several hours to just 20 minutes. Similar platforms are also employed to monitor
vegetation around powerlines, which is considered to be one of the largest O& M expenses
for most utilities (Charles, et al., 2020). High-risk corridors are detected, and maintenance
schedules are optimised by Al tools utilising satellite, drone and camera data. Case studies
reported significant reductions in inspection costs, along with a decrease in tree-related
outages of more than 30% (Aidash, 2024).
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Al-driven approaches are also being used for wind turbine inspections. Methods typically
combine Al with drone imagery or other methods, such as ultrasonic testing, vibration
monitoring and thermal imaging. Among these, drones stand out as one of the most
advanced and promising approaches. They enable blade fatigue testing, damage detection
and structural reliability analysis at accuracies exceeding 90% (Memari, et al., 2024) and can
pinpoint defects as small as 15 centimetres (Movsessian, Garcia and Tcherniak, 2021).
Replacing rope-access inspections with drones can reduce related costs by up to 70%
(Khristopher, Crowther and Barnes, 2021). Beyond the cost savings, these Al-enabled
inspection technologies significantly lower accident risks, enhance prediction accuracy and
boost overall productivity.

3.7 Barriers to the adoption of Al for energy optimisation

Al technologies already offer major potential benefits across the energy system, but their
implementation faces a range of hurdles (Table 3.9). The pace of uptake of Al applications
will vary according to the benefits they bring but also according to the case-specific barriers.
We explore some of these potential limiting factors here.

Table 3.9 = Potential barriers to the adoption of Al applications in energy

Barrier Potential impact on success Effort to overcome ‘
Access to data [ ] o
Access to digital infrastructure [ ) o

Skills and training
Regulation
Security o

Culture and social trust [

Low Moderate @ High @ Very high

Access to data represents a significant barrier to unlocking Al's potential in the energy sector.
Large parts of the energy system are fragmented — individual companies and organisations
do not necessarily share data and may be reluctant to do so for confidentiality or competitive
reasons. Establishing data-sharing mechanisms, such as standards, data spaces and
consortia, is a means to overcome this.

In tandem with data access is the issue of data quality, since this impacts the quality of the
Al model that can be produced. Data quality is often thought of in terms of completeness,
coverage, accuracy and timeliness. Al can be used to address quality issues, such as
improving completeness by inferring data points to fill in gaps. However, the inferred data
could have inaccuracies and be less valuable than the true measurements that Al models
ideally consume. High-quality data can be expensive to produce, involving resource-intensive
work, such as mapping together disparate datasets or cleaning out noise. High-quality data
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are likely to be less accessible, in part due to their innate value but also since their worth
could be eroded if used to train Al models.

The extent of digitalisation varies greatly by sector and region, placing some at a
disadvantage in the push to gain from Al’s potential benefits (see Chapter 5). A low level of
digitalisation can impact not just data availability but also the ability to implement Al
applications. This is particularly important for applications that require network
communications to access remote computing resources. Developing economic regions, such
as parts of sub-Saharan Africa, have built mobile networks, bypassing the development
phase of building a high-bandwidth fibre optic telecommunication system. This potentially
places them at a disadvantage as it limits their ability to accommodate the information
bandwidths to and from data centres that some Al applications require. Furthermore, a lack
of data centre developments in some regions causes reliance on long-distance
communication to far-away locations, with inherent latency issues. The alternative of
communications via satellite may be more costly and restrictive.

Al applications require a skilled workforce familiar with handling data and building models
tuned to the needs of the energy system (see Chapter 5). Cross-pollination of knowledge and
skills between the technology and energy sectors will accelerate progress. There has already
been some beneficial exchange in parts of the energy sector where digitalisation and large
data quantities have provided energy operators with an incentive to sharpen their
technology skills (e.g. in the oil and gas sector). However, other parts lag behind.

The implementation of Al solutions will face regulatory hurdles. This is already evident in
several areas, such as the restrictions placed on autonomous vehicle testing. The scale of
regulatory barriers will vary by geography, sector and use. Barriers in areas where safety or
security could be compromised (such as aviation or electricity networks) are likely to be
particularly stringent. The desire to preserve some element of human control is likely to
persist. Where Al is deployed in connection with consumer end-use devices and personal
data, the risk of privacy breaches will need to be considered. Regulators will need to examine
regulatory and certification processes and, where feasible and beneficial, adjust them to
enable the application of Al-driven solutions. This will also require the upskilling of
regulators, including on aspects related to cybersecurity (see Chapter 5).

A broader challenge that the expansion of Al could face is resistance from a lack of social
trust. This would especially be the case for applications where there are safety concerns
(e.g. autonomous vehicles) or the potential for impacts on finances (e.g. building energy
management). Social trust may also be challenged if the choice of individual consumers to
opt in or out is not always preserved as Al applications become pervasive. How this evolves
depends on implementation across all sectors, not just within energy, which will together
form the overall perception of how Al performs.
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Chapter 4

Al for energy innovation
The potential of Al to accelerate innovation

SUMMARY

® |nnovation is essential to achieving secure, affordable and sustainable energy. The
energy sector continues to innovate: from 2010 to 2024, driven by technology growth
and lower costs, unconventional oil and gas went from 10% to 25% of global oil and
gas supply; solar photovoltaic (PV) went from 30 terawatt hours (TWh) of annual
generation to around 2 000 TWh; and electric cars went from 0.01% to over 20% of
global sales.

® Innovation takes time. For energy technologies ranging from internal combustion
engines and air conditioning to lithium-ion batteries and solar PV, time from invention
to first commercialisation averaged over 30 years, and mass market uptake 20 further
years. The core technology of today’s artificial intelligence (Al), the artificial neural
network, took 35 years to progress from prototype to first commercialisation.

® Al is increasingly central to innovation pipelines. In medicine, Al led to a 45 000-fold
acceleration in the scientific rate of discovery of the three-dimensional structures of
proteins, the functional building blocks of human cells.

® Patent and start-up data suggest that Al-first approaches to innovation are under-
represented in the energy sector. Around 1% of energy-related patents reference the
use of Al as part of the patented innovation; this share is similar across fossil fuels and
clean energy. Only 2.3% of energy start-ups have an Al-related value proposition,
lower than the 7% for life sciences and 4.3% for agriculture.

® However, many areas of energy innovation are characterised by the kinds of problems
Al is good at solving: highly complex design spaces, the need to balance performance
trade-offs for an optimal outcome and rich datasets. For example, the discovery of a
perovskite that is stable and easy to manufacture could accelerate cheaper and less
space-intensive solar PV, and yet less than 0.01% of possible perovskite materials
have been experimentally produced. Al could dramatically accelerate this process.

® A core challenge of energy innovation is integrating new innovations into complex
products and new products into industrial-scale supply chains. Al can help here, too.
A battery gigafactory can produce up to 10 billion data points per day. Analysing these
with Al models can help to detect faults, predict performance and diagnose problems,
reducing the risks, costs and timelines for innovative chemistries.

® Policy has an important role to play in leveraging Al's potential to accelerate energy
innovation. A first step is a more comprehensive inventory of promising technology
areas and available Al tools (models and databases). Public policy should support data
production and dissemination. Al can dramatically accelerate the phase of hypothesis
generation: investment in high-throughput or automated laboratories, and faster
regulatory processes, will be needed to ensure testing and certification keep pace.
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4.1 Introduction

Innovation is a key pillar for achieving various goals, including energy security, climate change
mitigation, competitiveness and economic growth. In recent years the energy sector has
witnessed an accelerating pace of change, driven by a virtuous circle of cheaper and better-
performing new technologies and stronger policies incentivising their adoption.

B In 2010, unconventional oil and gas made up 10% of the global oil and gas supply; today
their share stands at over 25%, while their production costs per unit energy have fallen.
Innovations in hydraulic fracturing are starting to spill over into geothermal production,
potentially opening up much larger, previously uncompetitive resources (IEA, 2024a).

B In 2010, solar photovoltaic (PV) made up around 5% of global power generation capacity
additions and only slightly more than 32 terawatt hours (TWh) of annual generation. In
2024, solar PV accounted for more than half of global capacity additions and produced
around 2 000 TWh of electricity. This has been facilitated by a more than 70% drop in
the levelised cost of solar PV, driven by substantial reductions in material intensity,
improvements in cell efficiencies and huge gains in manufacturing productivity.

B In 2010, electric vehicles (EVs) made up 0.01% of global car sales and lithium-ion (Li-ion)
battery prices averaged nearly USD 1300 per kilowatt hour (kWh). In 2024, they
accounted for over 20% of global sales and Li-ion battery prices had fallen to
USD 115/kWh. Innovation delivered new battery chemistries, such as lithium iron
phosphate (LFP) and sodium-ion, with lower costs and lower use of critical raw
materials.

While these gains have been impressive, in several respects, the pace of energy sector
innovation remains slow. For example, there are sectors, such as aviation and cement, where
currently there are no large-scale, commercially available low-emissions technologies.
Innovation is also important for improving energy security, for example as electricity systems
become more dynamic, distributed and digitised. Innovation is also a core component of
competitiveness in international markets, and scientific and engineering progress in energy
technologies can trigger innovation breakthroughs in adjacent economic sectors. Systems
developed for the in situ performance measurement of wind turbine blades, for instance, are
being adapted to monitor aircraft wings. Nuclear research has also made important
contributions to the development of touch screens that underpin the consumer electronics
revolution.

Innovation, however, takes time and resources (Figure 4.1). Solar PV, for example, took
almost 30 years to go from prototype in the 1950s to first utility scale deployment in
electricity generation in the 1980s. Today, it accounts for 6% of global electricity generation
(up from 3% in 2020). Lithium-ion batteries took more than ten years to go from invention
in 1977 to commercialisation in 1991 (Winter, Barnett and Xu, 2018), and a further 30 years
before electric vehicles made up 5% of the global car market. In the technologies studied in
Figure 4.1, the simple average of the time from invention to first commercialisation was over
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30 years, and from first commercialisation to mass market uptake, over 20 years. These
timelines must be compressed if energy and climate goals are to be met.

Figure 4.1 = Innovation timelines for selected energy technologies and
artificial neural networks
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In the past, it has typically taken several decades for an energy technology to go from
invention to commercialisation and a further 20 years to reach mass market uptake

Notes: CCGT = combined-cycle gas turbine power plant; PEM = proton exchange membrane; US = United
States. Invention refers to the first instance of a technology that meaningfully resembles its modern iteration.
Mass market uptake refers to the time taken to achieve a 20% share of a relevant first-mover market, shown
in parentheses. PEM electrolysis has not yet achieved that milestone.

Al is becoming increasingly integral to basic research and innovation. For example, it took
almost 50 years of global research efforts from scientists to painstakingly map about 0.1% of
known proteins, which are critical for drug design. However, in 2022, AlphaFold, an Al model
developed by Google DeepMind, generated accurate structure predictions for over
200 million proteins, a 45 000-fold acceleration in the rate of discovery.

Today, there are several examples of Al driving research in energy technologies, but the
promise still lies mainly in the future. Some of the technologies the future could hold include
dramatically more energy-efficient carbon dioxide (CO,) capture, long-duration flow
batteries that are less reliant on — or entirely avoid — critical minerals, and low-cost, highly
efficient desalination technologies for an increasingly water-stressed world.

This chapter builds on the extensive work of the International Energy Agency (IEA) in tracking
energy innovation (IEA, 2020) and aims to provide a systematic understanding of how and
where Al could accelerate energy innovation. It is structured around four sections:

m  Section 4.2 looks at data from patents and start-up funding to examine the degree to
which Al is being applied to energy innovation today.
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m  Section 4.3 develops a framework for understanding how Al could accelerate energy
innovation.

B Section 4.4 analyses how Al could be applied to accelerate innovation in four critical but
contrasting energy technologies: batteries, catalysts, carbon capture materials and
cement.

B Section 4.5 analyses the policy landscape relating to energy innovation and Al.

4.2 What can we learn from patents and start-ups?

Patent and venture capital (VC) funding data provide information about innovation and
commercialisation in novel technologies (Figure 4.2). Patent filings in both the Al and energy
industries have surged since 2015, reflecting ongoing technological advances. From 2015 to
2022, the energy sector added 330 000 patents, 70% ahead of the Al sector. As well as the
differences in size and scope of the two sectors, this likely also reflects the higher prevalence
of hardware products among energy sector innovations, making their inventors more likely
to try to protect the underlying intellectual property.

Figure 4.2 > Patents and VC funding by sector
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While both Al- and energy-related technologies have seen consistent growth in patents,
venture capital funding in energy has lagged Al and the broader digital field

Notes: IPFs = international patent families. The digital sector represents companies whose primary activities
are centred around the use of digital technologies, including mobile applications, web platforms, Internet of
Things devices and computer-based solutions.

However, when it comes to commercialisation — denoted by VC investment flows — the two
sectors have followed different trajectories. In the last few years, the level of VC investment
in energy has lagged far behind that of Al. This shift is visible in 2024 investment trends —
while Al start-ups increased their fundraising to reach one-third of total VC investments,
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fundraising for energy start-ups declined to less than 10%. The difference is even more
marked when the broader digital sector is included: since 2020, Al and digital start-ups have
attracted two-thirds of global VC funding, compared with 8% for the energy sector.

One reason for the disparity in sectoral innovation may lie in the fundamental differences in
market structure and innovation dynamics. The energy sector is marked by high barriers to
entry, such as capital intensity, long project lead times and the need for extensive physical
infrastructure. These factors disadvantage disruptive new entrants — indeed, 80% of the
global oil supply still comes from about 400 companies tracing their origins to before the
invention of the integrated circuit in 1959. As discussed in Chapter 3, upstream energy firms
make extensive use of data and supercomputing capabilities. These are, however, deployed
in support of primary business objectives rather than the innovation of novel technologies.

In contrast, the digital sector operates in a very different innovation environment. Many
technology start-ups can scale rapidly with relatively low capital requirements. Software-
driven solutions allow for faster iteration cycles, enabling companies to bring products to
market quickly and adjust to emerging trends. Despite the increased capital investment
required to train and run consumer Al models, data centre investments are modular and
easier to redeploy for other uses.

As aresult, recent successful disruptor companies in the energy sector have adopted a faster
iteration model familiar to the digital industry, including Tesla, CATL, Octopus Energy and
Mitchell Energy.

The share of Al-related patents in total energy sector patents can give an indicator of the
extent to which Al is being used as a tool for energy-related innovation. Between 2020 and
2022, only around 1% of energy-related patents referenced the use of Al as part of the
patented innovation. There is little difference in this regard between the clean energy and
fossil fuel sectors (Figure 4.3). The rate of Al use in energy patents is about one-quarter of
that in the medical devices and imaging sector.

Similarly to patents, Al-related start-up funding as a share of total energy sector start-up
funding gives an indicator of the penetration of Al approaches in energy innovation. In the
energy sector, this share is around 2% for the period 2020-2024, lower than the 7% share for
life sciences and the 4% share for agriculture. This is substantially lower than the Al-related
share of all VC funding (15% between 2020 and 2024) and across start-ups in the digital
sector (23%).

The lower shares of fundraising attracted by Al-first start-ups relating to energy compared
with other technology areas may be attributed to several factors. First, the convergence of
energy and advanced software technologies, including Al, is a relatively new phenomenon.
Traditionally, energy infrastructure design and operation have prioritised reliability and
safety above rapid innovation, leading to a more conservative culture that does not adopt
the fast-paced, iterative approach common in the Al world. This often results in a dynamic
where Al expertise is brought into existing energy companies, rather than energy expertise
driving the creation of new Al-centric ventures.
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Figure 4.3 > Share of Al in patents and VC funding by sector
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The energy sector has not seen the rapid increase in Al innovation and
commercialisation that sectors such as digital technologies and medical devices have

Second, a significant “perception gap” exists. Many companies integrating Al into their
energy operations or innovation pipelines do not explicitly brand themselves as Al
companies. An example of this is Mitra Chem, a Li-ion battery cathode manufacturer that
employs Al approaches to guide innovation. It focuses on its objective of innovating and
commercialising iron-based battery cathode materials without drawing attention to the
innovation methodology. This may lead to incomplete data and a potential underestimation
of Al’s true presence in the sector. Combined with the inherent attractiveness and scale of
consumer-facing Al applications, these factors may lead investors to overlook the less
immediately visible applications of Al in energy production and infrastructure.

Consequently, publicly available data on patents and early-stage funding may be
underrepresenting the real potential of Al applications in energy. Established companies with
resources and infrastructure are already developing and deploying Al solutions. Data
suggests that Al is used to enhance existing energy infrastructure in applications including
grid management, predictive maintenance, demand forecasting and battery energy trading.

There is however limited evidence of Al being applied yet to generate innovations embedded
in products in energy production, storage or distribution. This reinforces the idea that, at
least for now, Al's potential in energy is largely being realised through incremental
improvements to operations rather than through the emergence of entirely new, Al-driven
product designs.
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SPOTLIGHT

Proteins are essential for nearly all biological processes. The role of different proteins
within these processes is determined by their three-dimensional (3D) structures. A more
holistic understanding of their structures and interactions could revolutionise drug
discovery. However, experimentally verifying the 3D structure of proteins is very time
consuming.

One of the most widely cited Al contributions to innovation is AlphaFold, a protein
structure prediction model developed by Google DeepMind. This example holds lessons
for the energy sector. However, it also highlights that care needs to be taken in
extrapolating innovation success from one sector (biomedicine) to another (energy).

AlphaFold was trained on the Protein Data Bank (PDB), an open-source repository of
around 170 000 experimentally determined structures. The PDB was assembled from
over 50 years of global research efforts but still represented only about 0.1% of known
proteins. In 2021, AlphaFold generated high-confidence structure predictions for over
200 million proteins (a 45 000-fold acceleration in the rate of discovery — see Figure 4.4).
This would have taken until the end of the 21st century using purely experimental
methods. AlphaFold is equivalent to an extremely rapid search tool for finding a “needle
in a haystack”, but the process still requires experimental validation.

Figure 4.4 > Traditional and Al-accelerated drug discovery performance

9100000 000  -rovvsersssessnssmsssinssmssinssmssins s s s s s
3

g 0001010000 NSRS 200 million modelled ...|.......
S using Al in 1 year

g D000 QOO  +eveseeemeeemeeet ettt ettt
€

>

=z TOO0 OO0  ooreeverereesosssnssrronssorsassrtssseronssstsassssssssorsnsssssassssssessrsasssssonsssssepppumueWTITI Ll iiuiiiiasssens

Experimental methods
10010 200 000 experimental
results in 50 years

1982 1990 2000 2010 2020 2024

IEA. CCBY 4.0.

Al modelling accelerated the pace of protein structure analysis
by around 45 000 times
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Lessons from the biomedical sector highlight broad themes in Al-driven innovation:

B First, the importance of large, high-quality datasets. AlphaFold's success was only
possible due to the availability of the PDB, an open-access, high-quality dataset
assembled over 50 years of global collaboration.

®  Second, the need for rigorous, human-driven validation before deployment. Al
predictions must be rigorously evaluated to ensure they are accurate and reliable.
While Al can identify patterns and generate insights at scale, human oversight
remains essential to assess causality, interpretability and unintended consequences.

®  Third, the challenge of translating Al advances into commercial applications — even
when Al accelerates discovery or problem-solving, real-world implementation is
often constrained by technical or regulatory barriers.

The breakthrough of AlphaFold has generated a huge amount of interest in Al-driven
innovation (it could be described as the “ChatGPT moment” of the field). While it holds
important lessons, care needs to be taken in applying the paradigm of one sector to
another. As we shall see throughout this chapter, the challenges of energy sector
innovation are sometimes characterised by similar extremely complex searches for a
“needle in a haystack”: a new material, molecule or enzyme, for example. However, often
the challenge lies as much, or more, in integrating this new material, catalyst or molecule
into highly complex products like batteries; integrating new products into large, complex
and slow-moving industrial supply chains; and concurrently addressing myriad enabling
conditions, including infrastructure, policy support and consumer preferences.

4.3 How can Al accelerate solutions to energy innovation
challenges?

4.3.1 Overview of the innovation cycle

Although innovation pathways are complex, they broadly progress through the following
phases:

m  Applied research focuses on understanding, measuring and manipulating the
fundamental physical, chemical or biological foundation of a technology. This early
phase broadly corresponds to Technology Readiness Levels (TRLs) 1 to 4.1 This phase is
sometimes characterised by the painstaking search for promising molecules, materials
or chemistries.

B The outcomes of applied research enable the development of prototypes (TRLs 5-6). A
key challenge here is the integration of new concepts developed in the laboratory into
more complex working devices.

L TRLs are a scale from 1 to 9 used for reporting on the level of maturity of new technologies. Originally
conceived by the National Aeronautics and Space Administration, they are now widely used as a measure of
innovation.
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B Prototypes are then scaled up during the demonstration phase (TRLs 7-8), where full-
scale commercial units are operated in real-world conditions. During this phase, scale-
up can falter under the weight of rising costs and implementation risks.

B After demonstration, the gap between costs and revenues begins to fall, but new energy
technologies may still remain unprofitable. However, purchases by early adopters
(TRL 9) can begin to build a durable market.

®  As products enter the mainstream, their users and manufacturers continue to see
opportunities for improvement, generating both modest design adjustments and
additional low-TRL ideas to be tested and scaled up as potential successors.

In this chapter, the stages of innovation are broadly grouped together into two phases:
proving (up to TRL 6) and scaling (from TRL 7).

4.3.2 Integrating Al into the innovation process

The full extent of the domains of many scientific fields makes exhaustive experimental
searches impractical. There are, for instance, more potential inorganic compounds with
four unique atoms than there are people on earth. Historically, researchers have relied on
laborious and expensive trial-and-error processes to navigate these vast design spaces. For
example, in developing catalytic synthesis processes to make ammonia — now the second-
most widely used industrial chemical globally — researchers at BASF spent over three years
systematically screening more than 2 500 catalysts.

Al can accelerate the search for candidate molecules, materials or chemistries in a number
of ways (see Figure 4.5):

B First, predictive Al models can learn from available experimental data on catalyst
designs, perovskite materials or battery chemistries to make predictions about which
candidates could meet desired performance characteristics. Examples of this include the
use of Al models for protein simulation in drug discovery (see Spotlight above).

®  Second, generative Al models can propose novel options (e.g. materials that have never
been synthesised) that can be explored and tested both computationally and
experimentally. For example, Microsoft’s MatterGen diffusion model can propose novel,
stable and unique materials with desirable properties when trained on existing
databases of relevant materials.

B Finally, large language models can help scientists access and organise vast bodies of
academic literature and extract information on existing technologies, approaches and
candidate designs.

Once a promising candidate is identified, the Al model’s assessment of its characteristics
must be validated. This validation can be achieved using high-throughput experimentation
(HTE), which also closely resembles the approach taken by the BASF designers of the
ammonia synthesis catalysts: once they had narrowed their pool of materials down to a
subset of iron-based materials, they developed standardised laboratory-scale reactors and
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conducted parallel tests across multiple candidates, dramatically accelerating the refinement
process. Modern HTE is more mechanised and performed on a larger scale but is based on
the same fundamental principles.

Figure 4.5 > Conceptual approaches to searching large solution spaces,
conventionally and led by Al
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Al-led design approaches can use existing information to systematically expand the
search space to consider more options than could ever be experimentally feasible

Al can itself be integrated into this process using self-driving laboratories, which represent
the next step in the evolution of HTE. They use iterative decision making to further accelerate
the prototyping process. By automating both the execution of experiments and the selection
of the next set of candidates to test, self-driving laboratories enable continuous, repeatable
iterations that would be impractical with human-led experimentation alone. The physical Al
system that guides this process can retrain itself with the outcomes of each experiment,
guiding the research towards promising directions. The Canadian firm Telescope Innovation,
for example, has combined robotic automation, process analytics and machine learning to
demonstrate new production methods for battery materials.

The A-Lab at the US Government’s Lawrence Berkeley National Laboratory provides a
compelling demonstration of the potential of self-driving laboratories for accelerating
materials innovation. This system synthesised 41 materials — initially predicted by the
Materials Project, an open-access database of material properties — without prior knowledge
of their structure by leveraging a knowledge base of more than 24 000 scientific publications.
The entire workflow, from synthesis to characterisation, was automated through robotic
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handling, with the system autonomously adjusting parameters when experiments failed. This
iterative approach shortened the feedback loop between hypothesis and characterisation
from weeks to days, ensuring that underperforming experiments contributed more
effectively to the development cycle (Szymanski, et al., 2023). Although very promising, these
tools have yet to reach the stage of complete autonomy, and human researchers are still
required for comprehensive characterisation, and purity and defect control (Peplow, 2024).

Despite their transformative potential, several significant barriers limit the widespread
uptake of self-driving laboratories in energy innovation. The most immediate challenge is
cost — developing a self-driving laboratory requires substantial investment in both robotics
and machine learning infrastructure, with costs potentially reaching tens of millions of
dollars. Given the field’s nascent state, these systems remain largely bespoke, further
increasing the complexity and expense of implementation. The quality and design of
experiments — determining which variables to test and how to structure the exploration of
the solution space — remain heavily dependent on human expertise and intuition.

4.3.3 What energy technology areas will be accelerated by Al?

Despite the substantial opportunities for Al to accelerate energy innovation, itsimpact across
different fields of scientific research will vary. Technology areas most suited to high-impact
applications of Al in the innovation process include:

m  Diverse solution spaces that have high levels of combinatorial complexity that cannot
be explored by trial-and-error experimentation but for which a large number of
potential candidates are well-described in the training data. Catalyst design and
pharmaceutical sectors are thus obvious candidates for Al-powered innovation because
of the permutational complexity of different atomic combinations.

m  Structured and high-quality data for building effective Al models. For example,
perovskite materials hold promise for solar PV applications, with over 10 million possible
perovskite structures. However, only about 1 000 have been synthesised, limiting the
training data available for Al models. While machine learning can estimate properties of
unexplored perovskites, its reliability remains constrained by the low availability of high-
quality, real-world data.

B Straightforward testing and verification. Training datasets are, by their nature,
incomplete and often exclude important metrics, such as energy efficiency and
manufacturing costs. Al-proposed reverse osmosis membranes, for instance, can be
tested using standard seawater in laboratory conditions; by comparison, plastics
recycling is complicated by the wide variety of potential input materials, which are
difficult to replicate prior to deployment.

B A receptive market and infrastructure environment that requires neither changes in
regulation nor behaviour and does not need investment in new assets in adjacent
sectors. Applying Al to technology problems that are likely to yield “drop-in” solutions
could produce faster impacts than applying Al to energy sector challenges that face
more complicated market conditions
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Table 4.1 applies these four criteria to key energy technology areas, showing specific
examples of innovations that could be transformative within those areas, and highlighting
the extent to which the innovation challenges correspond to the criteria. Many energy
technology challenges have a high degree of complexity, but many also lack adequate data
for Al to process that complexity. As with the scale-up of new energy technologies today,
almost all products of Al-driven innovation will face some hurdles in incorporation into
existing, interconnected energy systems.

Table 4.1 = lllustrative assessment of the potential for Al to accelerate
progress against selected key energy technology challenges

Solution  Structured Pre- Integration

Technology challenge space data deployment and
complexity availability verification scaling

Synthetic fuels - Catalysts with high efficiency,
selectivity and stability

Hydrogen electrolysis - Low-cost, highly efficient and
durable electrolyser catalysts

Carbon capture, utilisation and storage - Stable CO>
capture materials with high affinity and low energy
penalty

Electric vehicles - Novel battery chemistries using
cheap materials (e.g. sodium-ion, solid-state)

High-temperature heat storage - Stable phase change .
materials with high conductivity and latent heat

Desalination - Productive, stable and energy efficient .
reverse osmosis membranes

Advanced biofuels - Improved performance of .
enzymes and yeasts for 2"Y/3 generation biofuels

Solar photovoltaics - Efficient, stable, scalable
perovskite cells without critical mineral inputs

High-temperature heat pumps - Identification of
working fluids which phase change at high
temperatures

Long-duration energy storage - Cheaper, efficient
redox-flow or other long-duration batteries

Decarbonised cement - Cement production from
calcium silicate raw materials

Plastics recycling - Energy-efficient upgrading of .
pyrolysis oils
Effective nuclear fusion - Fusion reaction control [ ) o o

High Medium @ Low

Note: Green indicates a high degree of alignment between the criteria and the technology challenge,
suggesting Al is more likely to have meaningful impact in the sector; orange indicates some alignment, and
that innovation in the sector could benefit from Al; red indicates low alignment, suggesting a possible hurdle
to Al deployment.
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4.4 Focus on four selected technology areas

This section provides a more detailed focus on four technology areas that have the potential
to be improved by Al: batteries, synthetic fuel catalysts, carbon storage materials and
cement. Of course, the opportunities to deploy Al in technology and material design stretch
far beyond these four focus areas; they are selected as representative examples of how Al
might be deployed for innovation and the potential barriers to deployment.

4.4.1 Batteries

Modern batteries exemplify both a rapidly advancing technology and a major industrial
product. Continuous advancements in the field are pushing the boundaries of performance
and efficiency, but Al could further enhance them.

The deployment of batteries in the transport and power sectors brings clear environmental
advantages (IEA, 2024b). However, the growth of battery demand hinges on low prices and
high performance to make new technologies like electric cars cheaper or more attractive
than their equivalent conventional technologies. Beyond performance metrics, supply chain
concentration has also raised security concerns.

New battery technologies include solid-state, sodium-ion, lithium-sulphur, iron-air and
redox-flow batteries. Some of them, like iron-air and redox-flow batteries, target different
applications than established Li-ion technologies, such as longer-duration storage. Others,
like solid-state and lithium-sulphur batteries, could also accelerate adoption in sectors that
would benefit from or require higher energy densities, such as long-haul electric trucks or
short-haul shipping and aviation. Technologies like sodium-ion batteries aim to reduce
dependence on lithium. However, improvements in already widely commercialised
technologies can also have substantial and rapid market impacts, and should not be
overlooked by policy makers.

Core scientific challenges to battery development

Batteries are highly complicated devices, whose operation depends not only on the materials
employed but also on their exact combination and interactions. Their performance depends
on design at several scales — from the crystal structure of the active materials at the
nanometre scale and the microstructure of the electrodes, up to the cell and battery pack at
the macroscale. Innovation in batteries is an exercise in trade-offs, and a one-size-fits-all
technology that can revolutionise the sector is unlikely. However, Al can be applied to and
accelerate a large spectrum of battery innovations, from materials discovery to production
and battery operation optimisation.

The interactions between different materials, scales and battery operations create an
optimisation space with hundreds of dimensions, the entirety of which is practically
impossible to navigate. Researchers, therefore, use prior knowledge and chemical intuition
to study only the options they believe to be the most promising. Al tools, however, are well-
positioned to handle a far greater diversity of data types and scales.
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Al applications in battery innovation

Al is already advancing battery innovation (Figure 4.6), from materials discovery and testing
to performance predictions, production optimisation, battery management system
optimisation and end-of-life management.

It is challenging to discover new battery material contenders that can reach commercially
viable performance (energy density, rate and cycle life), be practically synthesised at scale
and be cost competitive. Materials discovery is one of the most significant areas of Al
application in battery development. It includes the design of cathodes, anodes, and liquid
and solid electrolytes. Many examples of Al deployment already exist. SES Al developed a
new cylindrical Li-ion cell using a new electrolyte discovered by its Al system, with improved
low-temperature operation, durability and safety, with key applications in drones and
robotics (SES Al, 2025a). The company also recently signed USD 10 million worth of contracts
with automotive original equipment manufacturers to develop Al-enhanced lithium-metal
and Li-ion batteries for EVs (SES Al, 2025b).

Figure 4.6 = Al applications for batteries
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The key applications for Al in batteries innovation revolve around six core areas along the
innovation cycle, from materials discovery through to operational optimisation
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Aionics, another Al battery start-up, developed the world’s first Al-powered battery design
platform to screen thousands of candidate materials in seconds for potential new electrolyte
designs (Aionics, 2024). Microsoft and Pacific Northwest National Laboratory used Al to
screen over 30 million materials for their potential use as solid electrolytes in less than a
week and synthesised the most promising ones (Microsoft, 2024; Chen, C. et al., 2024). IBM
Research has used Al to develop a new chemistry free of nickel and cobalt but has provided
little detail on the chemistry (IBM, 2025). Despite intense research activity, Al has yet to
demonstrate significant breakthroughs of new battery materials with clear data-evidenced
success, and the path to commercialisation remains long.

Al also brings major opportunities for automation in both battery testing and materials
analysis. In combination with robotics, Al has been utilised to greatly increase the throughput
of testing and analysing new material and electrolyte samples (Adarsh, et al., 2022).
Automation is seen as a major area of potential for Al to accelerate battery development
timelines.

The computational modelling of batteries and materials has been a powerful tool for battery
development, primarily on two levels. First, at the material level, density functional theory
(DFT) can be used to discover new materials and predict their properties. Second, mesoscale
cell-level modelling can predict the behaviour and performance of novel chemistries in
realistic cell formats before large-scale prototypes are made. Al can greatly enhance these
modelling efforts by increasing computational efficiency for modelling complex systems
(Yao, et al., 2022; Magddu, et al., 2023; Jie, et al., 2019).

Factories of 50 gigawatt hour capacity can produce up to 10 million cylindrical or hundreds
of thousands of prismatic EV battery cells per day,? generating vast and immensely valuable
datasets with hundreds to thousands of data points per cell. Al-based analytics are already
part of the toolkit used by the leading incumbent manufacturers and are becoming essential
to be competitive. For example, the world’s largest battery manufacturer, CATL, uses Al for
image-based defect analysis on its most advanced production lines (CATL, 2025). This
approach enables the early detection of defects and their root causes, improving production
yields and reducing scrap rates, which are key scale-up challenges for new players (Milne,
John and Novik, 2024).

Al can also have a significant impact on battery diagnosis and prognosis. This includes
improving cycle-life and performance prediction, enhancing failure forecasting, facilitating
the design of more precise warranties, anticipating maintenance and reducing costs for
manufacturers (Rahmanian, et al., 2024; Cao, et al., 2025). On the diagnostic side, Al can
facilitate the analysis of failed cells to pinpoint failure modes and support their repurposing
in second-life applications or recycling (Tao, et al., 2023). Finally, during battery operation,
Al can play an important role in optimising battery management systems to ensure longer,
safer and more efficient performance (Attia, et al., 2020).

2 Assuming an average plant utilisation factor of 85% over the year, a cell voltage of 4 volts and cell capacity
of 60 ampere hours (prismatic) and 3 ampere hours (cylindrical).

Chapter 4 | Al for energy innovation 179



Other battery innovation barriers

Battery production relies on complex supply chains, spanning from mineral extraction and
refining to the production of key components, such as cathode active materials, additives,
electrolytes and separators. Different battery chemistries require distinct supply chains, and
establishing one that meets the industry’s performance, quality and safety standards can
take up to a decade and require significant investment.

The many industrial applications of batteries create the additional challenge of translating
Al-accelerated laboratory results to an industrial scale. Laboratory-scale tests are often free
of the key limitations that govern practical applications, which can lead to excessively
optimistic claims or over-extrapolation, which can hurt investors and the image of the
industry as a whole (Frith, Lacey, and Ulissi, 2023).

A range of elements are needed in the battery sector to foster Al in battery research (El-
Bousiydy, et al., 2021): more transparent and reproducible testing; standards in reporting
experimental data; a sufficient number of tests to assess their statistical relevance; and
accessible databases (Open Source Battery Data, 2025; Ruifeng, et al., 2025; Haowei, et al.,
2023; Shengyu, et al., 2025). However, a key challenge is that some of the Al applications in
battery innovation that are likely to have the highest impacts, such as improving production
efficiency, are located closer towards the commercialisation part of the innovation process,
which may limit incentives to build open datasets.

Innovation timeline compression

The identification and testing of new battery materials can take many years. Al-driven
approaches, combined with HTE and self-driving laboratories, have the potential to reduce
this timeline by up to one order of magnitude — potentially cutting it down to just a few
months (The Chemical Engineer, 2024; Chen, et al., 2024). However, the effectiveness of Al
in materials discovery depends heavily on the availability of high-quality data, which must
first be collected through laboratory research or computer modelling. Also, discovering new
and promising materials is only the first step. The main cathode materials currently used in
EVs and battery storage, nickel manganese cobalt oxides (NMC) (Liu, Yu, and Lee, 1999) and
lithium iron phosphate (LFP) (Padhi, Nanjundaswamy, and Goodenough, 1997), were both
discovered more than 25 years ago, and it took about a decade before they reached large-
scale commercialisation.

Scaling up battery production and industrialisation is complex, slow and capital intensive (see
Figure 4.7). To meet the stringent requirements of the auto industry, battery manufacturers
must be capable of delivering large volumes of high-quality cells with minimal defects (fewer
than 10 defective cells per million). To achieve quality metrics of safety, performance and
manufacturability, tens of thousands of samples need to be produced across a range of
testing phases (from A- to D-samples) in which different metrics are assessed. Advancing
from the smallest to the largest testing phases can take several years, or even up to a decade
for smaller, less capital-intensive start-ups or batteries requiring new manufacturing
processes. Battery production also requires a complex supply chain involving dozens of
suppliers, and delays and bottlenecks in securing materials at scale can further impede
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industrialisation and commercialisation. In addition, after having reached commercial scale,
battery producers must still undergo a rigorous production part approval process (PPAP) to
serve the automotive sector, which can take up to an additional year. While Al and
automation can streamline innovation production, stringent safety and performance testing
requirements (from A-samples to PPAP), along with the development of the necessary supply
chain, are likely to remain a major bottleneck in bringing new products to market.

Figure 4.7 = Potential to accelerate battery innovation with Al

Batteries are complex, integrated devices.
Al could innovation
through materials discovery and automated

‘ Conventional testing and analysis.
Al could the pre-commercial

Al-led demonstration phase and
production efficiency gains to
reduce costs.

Larger

Scaling — costs, risks and time

Al could reduce time for new battery material
—» discovery by as much as a factor of ten, though
Smaller Larger many other barriers must still be overcome to
Proving — costs, risks and time reach commerecialisation.

Smaller

IEA. CCBY 4.0.

Al can decrease the time for materials discovery and increase production efficiency once
at commercial scale - but bringing new products to industrial scale will remain challenging

4.4.2 Catalysts for synthetic fuel production

Several sectors remain dependent on hydrocarbon fuels due to their high energy density,
including aviation, shipping and long-distance trucking. Transitions to low-emissions energy
systems will require substituting these fuels. While electricity is making inroads, including in
long-distance trucking, energy-dense fuels are likely to be indispensable for some use cases,
such as aviation. One option is biofuels, but sustainability concerns limit the total volume of
available biomass feedstock. An alternative is synthetic hydrocarbons, made by combining a
climate-neutral carbon source with low-emissions hydrogen.

Almost no low-emissions synthetic fuels are used today. In strong climate mitigation
scenarios, synthetic fuels play a major role, for example as sustainable aviation fuel
(Figure 4.8). Existing sustainable aviation fuel production relies on the hydroprocessed esters
and fatty acids (HEFA) pathway, but this pathway is constrained by the availability of biogenic
feedstock, necessitating alternative chemical processes that can produce synthetic fuels
from a broader range of carbon sources. These alternatives include Fischer-Tropsch (FT)
synthesis, which combines hydrogen and carbon monoxide to form long hydrocarbon chains.
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Figure 4.8 = Bio- and synthetic kerosene production under today’s policy
settings and a pathway incorporating national ambitions,
2023-2050
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Although HEFA pathways dominate current production, synthetic approaches (FT and ATJ)
play an increasingly important role in achieving climate pledges

Notes: FT = Fischer-Tropsch synthesis; ATJ = alcohol-to-jet; HEFA = hydroprocessed esters and fatty acids.
National ambitions include targets made by countries for the energy sector, the climate, and net zero
emissions ambitions.

Core scientific challenges to catalyst development

FT synthesis is very energy intensive. CO, needs to be reduced to carbon monoxide (CO).
Because CO,is chemically inert, high temperatures or high voltages are needed to push the
reaction forward, which creates energy losses that make even state-of-the-art approaches
very inefficient. Current state-of-the-art FT processes involve energy losses of around 30%.
Better catalyst designs narrow the gap between the energy needed to produce synthetic
fuels and the energy recovered when those fuels are used.

Beyond breaking up the inert CO, molecule, catalysts are also needed to reformulate the
reactants into long hydrocarbon chains. Historically, FT synthesis has not targeted the
production of aviation fuel specifically, which is made from longer carbon chains than
gasoline. Achieving a high degree of selectivity towards the right chain length is directly
related to the product cost, as it makes more efficient use of the input feedstock, i.e. CO,.
Sustainable sources of CO,, such as that extracted directly from the atmosphere, are
expensive, so more efficient use of CO, inputs is critical to lowering FT synthesis costs.

However, achieving the right distribution of chain lengths is complicated because it depends
on the affinity between the carbon compound and the catalyst surface — too weak, and the
carbon chains will be too short; too strong, and they will make heavy waxes that are not
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useful fuels. More selective catalysts are often less reactive. To compensate, larger and more
expensive equipment is needed to ensure all the feedstock is converted into product,
creating a difficult trade-off between selectivity and conversion.

There are many other complications for researchers:

B The combinatorial space is large because different intermediate molecules can be used
on the path between CO, and synthetic fuels, performed in single or multiple reactors.

B Catalyst performance depends not only on the metal or alloy used as a catalyst but also
on the support structure, further expanding the potential design space.

B Many catalysts become deactivated easily, so stability needs to be characterised and
understood.

B Promising performance is sometimes only achieved using precious metals, but the
performance improvement may not justify the material costs.

Designing better catalysts for FT synthesis could lead to lower energy and capital costs, but
there is a huge design space and multiple and often conflicting optimisation criteria.
Conventional approaches are time consuming and expensive.

Al applications in catalyst R&D

Applied researchers in the catalyst sector are already making substantial use of Al, but there
is potential to go much further. Integrating different types of Al into the different phases of
the design process is needed to unlock its full value.

The most common existing use case for Al in the sector is to predict catalyst performance at
the molecular level. This is enabled by the performance of traditional quantum physics-based
modelling approaches, such as density functional theory (DFT). Although DFT is extremely
computationally expensive and cannot be deployed on a large scale, it is well suited to
producing training datasets for predictive Al. These predictive Al applications, which are
usually based on machine learning or neural networks, are hundreds or even thousands of
times faster at estimating catalyst performance at a molecular level than DFT. The automated
Materials Discovery for Electrochemical Systems (AutoMat) tool from US researchers, for
instance, accelerated some catalyst design calculations by a factor of almost 200 — from
hours to seconds — by deploying predictive models trained on DFT calculations (Annevelink,
etal., 2022). The Material Generation with Efficient Global Chemical Space Search (MAGECS)
tool from the Key Laboratory of Quantum Materials and Devices, when applied to alloy
electrocatalysts, generated over 250 000 structures, from which five were synthesised and
demonstrated to have high performance at the laboratory scale (Song, et al., 2025).

More advanced uses than performance prediction are beginning to be reported. These draw
from techniques developed in biochemistry: generative models are trained on existing data
to propose entirely new candidate catalyst materials that are likely to meet the pre-specified
performance criteria.
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Training data are widely and openly available. The Open Catalyst Project, created by Meta
and Carnegie Mellon University, contains data for 19 000 molecules in 1.3 million different
configurations, rigorously calculated using DFT. The dataset has been used to train predictive
models to estimate the activity of catalyst surfaces and how tightly different molecules bind
to those surfaces. Similarly, the Catalyst Hub reports detailed information relating to over
100 000 catalytic reactions calculated using DFT.

Although these open-source data are useful, the presently available training data remain
incomplete:

B The mesoscale structure and porosity of the catalyst support can affect performance but
are not captured by DFT simulations at the molecular scale, which make up the majority
of open-source data.

B Where experimental data beyond the microscale are available, they are not present in
sufficient volumes to train deep-learning modules, although Al tools that are less data-
reliant can be deployed in some contexts.

B Some materials are not well represented in existing data, such as FT synthesis catalysts.
Many machine learning approaches applied to FT synthesis have relied on datasets of
fewer than 200 catalysts, which lack the richness to assess a wide array of performance
characteristics.

Because of these limitations, laboratory validation is generally needed to assess the broader
suite of catalytic properties at the mesoscale for materials proposed by generative Al. Self-
driving laboratories can accelerate this phase: for the development of hydrogen catalysts,
robots have been used to search for proposed molecules, guided by predictive Al approaches
that can minimise the number of experiments needed to find the best performers. Although
expensive and time consuming to build initially, these self-driving laboratories can reduce
the research time by a factor of 1 000, delivering results in days instead of years. However,
these closed-loop experiment designs are more complex to deploy in applications like FT
synthesis because the high temperatures and multiple phases present make robot design
more complex.

Even where Al models can effectively propose and verify new catalyst designs with high
efficiency or selectivity at the laboratory scale, it is complex to translate the predicted
performance outcomes at an industrial scale. Predictive Al can eventually help bridge the
gap: given adequate operating data, predictive Al can be trained to model catalyst
performance at the scale of real-world industrial applications.

Other innovation barriers in catalysis

Producing synthetic fuels is inherently an energy-intensive process, and there are
thermodynamic limits on how much more efficient it can become. Compared to production
based on current state-of-the-art technology, even very much improved catalysts could at
best halve energy consumption. Lower energy consumption can translate into lower costs,
but the costs of the input CO, and upfront capital costs will remain large. The policy
framework is therefore critical to increasing the scale of synthetic fuel deployment. Carbon
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prices and synthetic fuel mandates, as in the European Union, can improve the business case
for investment. Because room for improvement is limited by the energy demands of the
process, the catalyst design of synthetic fuels may only slightly accelerate the scaling of
synthetic fuel deployment, even though it has significant potential to improve research
during applied science and prototyping phases (Figure 4.9).

Figure 4.9 = Innovation acceleration from Al in the production of synthetic
fuels
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There are many catalytic reactions reported in open-source data that Al can
leverage to accelerate innovation, but investment remains a hurdle to scaling up

Although Al can be helpful in identifying catalysts with improved performance, those
catalysts themselves need to be synthesised, which can be a costly and complex process. This
process is quite different from assessing the performance of the catalyst itself but may also
be subject to improvement from Al. In some cases, it is not possible to synthesise the
molecules proposed by generative Al.

4.4.3 CO; capture materials

Carbon capture, utilisation and storage (CCUS) has important use cases across power
generation, industry and hydrogen production, and the removal of historical emissions from
the atmosphere. It can also be used to provide CO, from a sustainable source for the
production of chemicals and synthetic fuels (see Section 4.4.2). Current deployment of CCUS
is low, with annual capture of only around 50 million tonnes of CO,, or only 0.1% of global
emissions from the energy sector. Innovating new materials could reduce the process energy
consumption and costs associated with CCUS; this section considers how Al could accelerate
the development of those materials. Discussions of how Al could be applied to optimise
complex engineering projects are captured in Chapter 3.
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Core scientific challenges to carbon capture materials development

The fundamental challenge of carbon capture is to extract pure CO, from gas mixtures in
which the CO; itself is sometimes very dilute. New carbon capture materials therefore need
to strike a delicate balance. On the one hand, they need to attract CO; sufficiently strongly
so that they do not collect other gases like nitrogen. On the other hand, the stronger the
attraction to CO,, the greater the regeneration energy required to subsequently release the
CO; so that the material can be continually reused and the captured CO; permanently
sequestered.

Existing materials do not strike the optimal balance and therefore CCUS is, at present, a
capital expenditure (CAPEX)- and energy-intensive process. Current performance is several
times more energy-intensive than the theoretical minimum (Figure 4.10). Innovation is
needed to find capture materials that are highly selective to CO, and have low regeneration
energy needs while performing well in the specific contexts of different energy sector
applications.

Figure 4.10 > Best-in-class energy consumption for CCUS technologies

by context
NG post-combustion DAC - solid sorbent DAC - liquid solvent

O A0 et s
o
g 8
3]

6

4

2

Market Lab Theory Market Lab Theory Market Lab Theory

B Heat M Electricity Work equivalent Compression and other balance of plant

IEA. CC BY 4.0.
The efficiency of CCUS technologies has been improving
but remains far from the theoretical limit

Notes: GJ per t CO; = gigajoules per tonne of carbon dioxide; DAC = direct air capture; NG = natural gas. Market
refers to commercially available solvents. Lab refers to the best materials reported in the academic literature.
Theory refers to the thermodynamic minimum energy demand, which is shown as a work equivalent. If
supplied as heat, this energy demand could be significantly higher. Solid sorbent technologies typically use
lower-quality heat than liquid solvents for DAC.

Source: IEA based on data from An, et al. (2023).

The task is further complicated by a host of other challenges in chemistry, physics and
engineering:

B Both CO; and nitrogen are chemically inert, making it difficult to separate the two.
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B CO;sources—both the atmosphere and point sources like flue gases — have low densities,
meaning equipment to process them needs to be large and CAPEX-intensive.

B The composition of real flue gas streams is variable by application and over time;
materials that perform well on more concentrated streams from coal gas plants
(10-15% CO) may be less effective on more dilute streams from natural gas power
plants (4-5% CO,) and less effective again in direct air capture (DAC) (about 0.04% CO,).

m  Often, the release of CO, from the material in which it is captured, and thus the recycling
of that material for further use, requires high-temperature heat. Availability of the
required heat can be limited on industrial sites, requiring auxiliary boilers that further
increase CAPEX and operational costs and pose logistical challenges on space-
constrained brownfield sites.

m  Existing CO, capture materials like monoethanolamine are corrosive and degrade under
the high temperatures needed for solvent regeneration.

Because of these challenges, progress to date has been slow. While there have been
incremental improvements in the energy consumption of technologies based on commercial
capture solvents (from around 4 megajoules per kilogramme of CO, [MlJ/kg CO,] to
2.3 MJ/kg CO, for capture from natural gas), development in the past two decades has not
led to step changes in performance.

Alternative capture processes that do not require high-temperature heat to operate, such as
solid adsorption on metal organic frameworks (MOFs) and membrane separation, could offer
a step change in performance. This is particularly needed for processes that capture directly
from the air, for which the minimum work of CO, separation is the highest. The search space
for these materials is very large — at least 1 million MOFs have already been proposed in
silica, and there is significant space for further exploration (White, et al., 2024).

Al applications in COz capture materials innovation

Al approaches have already been widely deployed to improve solvent design in the amine
absorption processes that dominate existing approaches to CCUS. The design of amine-based
processes is not trivial: the solubility properties of CO, in amine solutions are complex, and
the facility design involves a significant amount of heat integration and recycling.

Typical Al approaches have used predictive models to substitute for more computationally
intensive process simulations. These process simulations can be used to generate training
data to improve the performance of the Al model. However, to date, these models have
generally focused on relatively small training datasets, which has only allowed for partial
characterisation of the candidate molecules. For instance, the MDLab created by IBM
Research applied machine learning approaches to integrate existing open-source datasets
for amines used in CO, capture with broader proprietary chemical databases to identify a
wider range of candidate molecules. However, the training dataset of amines that had been
tested for CO, capture contained only 167 molecules, which limited the output of the trained
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model to estimates of absorption capacity and not other key performance metrics like
regeneration energy.

Beyond amine-based technologies, MOFs are less developed but have significant potential
as a CO, capture material. They are a type of advanced material whose properties
(e.g. surface area, pore size and reactivity) can be precisely controlled by changing the
constituent molecules and crystal structure. Computational data on MOFs are widely
available in general materials databases, and the Open DAC 2023 Dataset produced by Meta
and GeorgiaTech focuses on MOFs specifically, including around 9 000 potential candidates
(Sriram, et al., 2024). However, datasets for MOFs produced exclusively by means of
computer modelling may include high rates of chemically invalid structures that are not
useful for training Al models (White, et al., 2024; Friedman, 2024).

Recent advances in this field have seen the deployment of generative Al models. The
Argonne National Laboratory proposed a workflow that generated 120 000 MOFs using Al
and then used a range of predictive Al approaches and conventional computational
chemistry to identify the top-performing candidates with valid chemistries (Park, et al., 2024);
this process is similar to that used for catalysts as described in Section 4.4.2. The Korean
Advanced Institute of Science and Technology has developed a large language model called
ChatMOF, which can interpret textual inputs and propose MOFs that meet certain property
specifications (Kang and Kim, 2024). These techniques have manageable computational
loads, and the entire training and inference process can be done using only conventional
cloud computing. Generating and estimating the properties of entire MOF datasets takes in
the order of hours to days, which represents a significant acceleration compared with the
approximately 100 000 MOFs that have been experimentally synthesised in the last 50 years
of academic research and which represent only a small fraction of the total number of
feasible MOFs.

Although the advances in material design facilitated by Al have been impressive, the training
datasets report molecular CO; affinities and not actual CCUS plant operating data. Some
open-source datasets that report these data are beginning to become available from publicly
funded sources like Technology Centre Mongstad in Norway and the National Carbon
Capture Center in the United States. However, these only include operating CCUS facilities
that are based on solvents and do not include advanced solid-state materials, like MOFs, that
have yet to be deployed. These data sources can help to bridge the gap between material
performance in the laboratory and that at an industrial scale. Training Al models on these
data can make them better at predicting performance in industrial settings, reducing time-
consuming and expensive iteration to optimise real-world performance. For example,
models trained on these data could estimate a wider range of important material properties,
such as heat capacity, thermal conductivity, density, surface tension and viscosity, and assess
trade-offs between these kinds of performance parameters and business case drivers (such
as upfront investment requirements and the levelised capture cost per tonne).
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Other innovation barriers in CCUS

Al can help ameliorate the energy penalty associated with CCUS at a technical level; however,
there are other substantial hurdles to deployment that will delay the introduction of new
CCUS materials to the market (Figure 4.11). For instance, translating new technologies from
laboratories to industry is challenging. Al has already been deployed to identify highly
performant MOFs, and verifying the properties of these materials at the laboratory scale
typically requires only milligrammes to grammes of material (Wright, et al., 2024). In contrast,
expanding production into the order of hundreds of tonnes per year itself requires
substantial research, equipment and investment.

Figure 4.11 > Innovation acceleration from Al in CO2 capture materials
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Al is well positioned to tackle the computational challenges of selecting new CO: capture
materials - but integrating it into the broader energy system remains complex

A share of the deployment of CCUS in the electricity and industrial sectors will be in plants
that have already been built. Adding complex end-of-pipe equipment to these brownfield
facilities is not straightforward. Innovation in CCUS materials can reduce the need for
additional on-site equipment but not remove these complexities altogether. Industrial
facilities are not always co-located with suitable storage geographies, requiring significant
infrastructure investment — including CO, pipelines, CO,injection facilities and, in some cases,
CO; shipping. Al can reduce the time and costs of this investment by helping optimise
brownfield site layout and heat integration, and identifying the sites most suitable for CCUS
retrofitting.

Beyond these hurdles, the regulatory and permitting environment is complex. CCUS projects
exist in a complex investment environment; viability may depend strongly on uncertain
carbon prices, and there can be significant upfront capital investment. Even superior CCUS
technology will struggle if investors cannot translate technological value into market value.
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4.4.4 Cement production

Cement is a critical building block of modern, urbanised, industrialised economies. Excluding
water, global demand for concrete is greater than all other materials combined. Because of
its scale, the cement industry’‘s energy consumption and CO, production are substantial. It
accounts for 6% of global energy-related CO, emissions 3, 60% of which are process emissions
that cannot be abated by switching to clean energy. Although demand for cement and
concrete has peaked in advanced economies, consumption remains high, and growth will
continue in many emerging market and developing economies. Sustainable solutions need
to be found, but these must also be applicable at a huge scale and low cost.

Core scientific challenges to cement decarbonisation

Cement is difficult to decarbonise because most of its emissions come from calcium
carbonate, one of the core raw materials from which it is made. Calcium carbonate is fired
in kilns at high temperatures, releasing CO; and reacting with other raw materials to form
clinker. Clinker is the primary component of ordinary Portland cement (OPC). Clinker binds
together the aggregate material in concrete to attain high compressive strength. Clinker is
useful because it hardens at the right rate: slowly enough that it can be poured into the
desired shape within hours of mixing but quickly enough that it acquires moderate
compressive strength within a week and high compressive strength within a month.

One option to eliminate process emissions from clinker production is to use CCUS. However,
this may be held back by high costs, the cost-sensitivity of consumers in emerging market
and developing economies, and the wide spatial dispersal of the approximately 2 500 cement
kilns operating today, necessitating expensive pipeline infrastructure to bring captured CO,
to storage sites.

An alternative to CCUS is producing clinker from raw materials that do not contain carbon
(non-carbonate materials). However, the search space for non-carbonate materials is
strongly constrained by the small subset of materials available on earth that can be produced
at the scale required to meet cement demand. It is further constrained by the need to
minimise costs: cement is — by a significant margin — the cheapest material produced by
heavy industry on a per-tonne basis.

A third option, which can reduce but not eliminate process emissions, is clinker substitution
using supplementary cementitious materials (SCMs). These are already in widespread use for
cement production because they are far less energy intensive than conventional clinker. Coal
fly ash and steel blast furnace slag are the dominant supplementary cementitious materials
today, but their availability is constrained and would fall in the future in strong climate
mitigation scenarios.

Despite the considerable scientific challenges to developing new materials, and the need to
reduce clinker content in cement, research and development (R&D) spending in the sector is
low. As a percentage of their revenue, cement companies invested less than 1% in R&D in

3 This includes CO2 emissions from fuel combustion, industrial processes, and fugitive (flaring).
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the 15 years leading up to 2020, leading to total aggregate R&D far below other sectors with
comparable CO, profiles, such as the steel and automotive sectors. Research into new
cement technologies itself needs to be low cost.

Al applications in cement R&D

Industry and academia have adopted Al to model the strength of new cement blends.
Predictive Al models can be useful for advancing clinker substitution because they allow
prediction of the development of compressive strength, taking into account the time since
the concrete was poured and the contents of the concrete, including the concentration of
supplementary cementitious materials. However, the number of data points available for
training is very small compared with other technologies. A widely cited training dataset, the
Concrete Compressive Strength dataset of the UCI Machine Learning Repository, contains
just 1 030 entries, for which it reports only nine variables per entry. It was created in 1998
and remains in common use for training models. This contrasts strongly with other sectors
like catalysis where new experimental data have continuously become available.

The applicability of existing data to novel applications is low: the only SCMs included in most
datasets are fly ash and steel slag; alternative emerging approaches are not represented, and
this limits the scope for Al. There are many promising alternatives: calcined clay-based
cements (LC3s) can reduce clinker content to around 50%; ultra-low-clinker cements can go
further — down to around 25% — by careful tuning of the concrete and cement blend;
carbonating calcium silica cements (CCSCs), like the Solidia technology under development
by Holcim, have a different chemical structure that requires less carbonate addition, but
these are not suitable for all applications. If data availability improves, Al could accelerate
these technologies — not just for emissions abatement but also to reduce energy
consumption.

Expanding the reach of cement datasets to include these clinker reduction approaches is
necessary to better train Al models to predict the compressive strength development of
these new cement blends. The data required include, at least, a more complete breakdown
of the supplementary cementitious materials used; the type and quantity of chemicals added
during concrete mixing to enhance strength (admixtures); and the complete particle size
distribution of the aggregate, which can impact the performance of ultra-low-clinker
cements. Models trained on these data could reduce the amount of laboratory testing
required to identify new performant cement blends.

Non-carbonate cements show great promise for reducing process emissions but have low
TRLs that could benefit from acceleration by Al. Research interest in the area is active: two US
start-ups, Sublime and Brimstone, are entering pilot-phase production using novel processes
to produce cements from these silicates. There are also unexplored opportunities with
magnesium-based cements, which have been deployed in niche applications, but which were
formulated from magnesium carbonates that produce even more process emissions than
conventional cement. Non-carbonate alternatives, such as magnesium silicates, may have
adequate geological availability in some regions, but they have no substantially developed
technology routes that could be adopted for large-scale production.
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Figure 4.12 = Technology readiness levels and process emissions associated
with novel cement technologies
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Novel cement types can offer significantly lower process emissions
but require ongoing innovation to reach the market

Notes: OPC = ordinary Portland cement; LC350 = limestone calcined clay cements with a clinker content of
50%; CCSCs = carbonating calcium silica cements; Mg = magnesium. OPC is a mature technology with a TRL
greater than 9. Sequestration effects during the carbonation of CCSCs are not counted in the estimation of
their process emissions.

Al may enable these technologies to achieve a high level of industrial maturity rapidly to
compete with the 100vyears of industrial optimisation that have been applied to
conventional cement production. Opportunities for the optimisation of non-carbonate
production go beyond the reduction of process emissions — non-carbonate cements can also
be more efficient than the current best-in-class technology used for OPC. If achieved globally,
the potential for energy reduction is around 6 000 petajoules, or about 50% of today’s
consumption within the sector.

Both electrochemical and hydro/pyrometallurgical pathways have been proposed to process
non-carbonate materials,* creating a complex solution space. The electrochemical route
faces similar technical challenges to other electrochemical processes in which Al has already
been widely deployed for efficiency optimisation. The methods for electrochemical catalyst
design, outlined in Section 4.4.2, can also be applied to non-carbonating cement materials
to design electrolytic cells that are efficient, affordable and stable. Hydro/pyrometallurgical
pathways are affected by a range of interacting parameters — pH, temperature, residence

4 Electrochemical pathways use an electrolytic cell (like those used to produce hydrogen) to enable
decomposition of the raw materials using electricity. Hydro/pyrometallurgical pathways first decompose the
raw materials into calcium salts using several phases of acid leaching (hydrometallurgy) then subsequently
process them into cement by kiln firing (pyrometallurgy).
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time and particle size distribution — which can be complex and non-linear, and which could
be better handled by Al tools.

Overcoming the limitations of data availability for this novel technology is challenging but
not impossible. In the catalyst research space, machine learning models have been
effectively trained on small datasets, emphasising the importance of the information content
of datasets beyond merely their volume or size. Using data collected in previously unexplored
scientific contexts, or using experimental designs close to known high-performing examples,
may hold more value for training Al than unsystematically gathered data.® Alternatively,
datasets for catalyst materials that are applicable to all electrochemical processes are very
large. Targeted experimentation and computational chemistry can be used to adapt these
datasets so that they can be used to train Al to specifically propose materials for producing
cements from non-carbonate materials.

Because of the global scale of cement production, meaningful uptake of new technologies to
produce cement from non-carbonating raw materials requires participants from many
sectors of government and across all regions, including emerging market and developing
economies in particular. Although Al may not have been used by first-generation innovators
for want of data availability, second- and third-generation innovators will benefit from
increasing data volumes and superior Al models and can, therefore, bring new opportunities
to the market more quickly.

Other innovation barriers in cement production

Al, aided by adequate data, can accelerate the maturation of these technologies and
therefore reduce energy use and process emissions; however, even these high-performance
innovations will struggle to rapidly transform the sector simply because of the market’s scale
(Figure 4.13). For comparison, the largest electrochemical process in heavy industry today is
primary aluminium, which generates about 110 million tonnes of product per year. If the
entire capacity of aluminium production by weight was replicated and applied to the
electrochemical synthesis of cement from non-carbonate materials, it would still represent
less than 4% of global demand. Appetite for capital investment in new plants is low. In most
advanced economies, and in the People’s Republic of China (hereafter, China), cement
demand is in decline, which has the potential to create production overcapacity.
Replacement technologies may need to wait for conventional plants to be retired, but
industrial plant lifetimes can be long (> 25 years).

The scale of the sector informs the broader regulatory and business environment. Because
of concrete’s ubiquity, regulators need to be convinced of the safety performance of new
market entrants, which requires rigorous testing. The testing environment itself can be

5 Data with high information content can be gathered during experimentation phases by using active learning
approaches, such as uncertainty sampling, entropy and query-by-committee, to guide testing into areas of
particular weakness for Al models, enabling increases in sampling efficiency by a factor of between three and
ten.
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challenging for new entrants: demonstration-scale plants need to be run for a long period to
produce sufficient material for standard tests.

New investment also needs to integrate dispersed and complex supply chains, which include
guarries, cement plants, concrete grinding and a wide range of use cases like prefabrication,
ready-mix and on-site mixing. Different technologies will require changes at different points
along the supply chain, each with unique complexities. For example, non-carbonate routes
can produce cements that are drop-in substitutes for existing cement, which may help them
clear the hurdles of regulatory approval, reducing the need for adaptation across the
downstream supply chain. Conversely, the upstream supply chain relies on the quarrying of
different feedstock, and the electrochemical pathway needs significant electricity generation
and transmission infrastructure to supply energy to cement producers.

Figure 4.13 > Innovation acceleration from Al in cement
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There are exciting innovations in the cement sector, which Al could help prepare for the
market, but scaling them to make a dent in the huge cement market is challenging

4.4.5 Summary

Across the four focus areas, Al is already used in the search for molecules, chemistries and
materials (i.e. at the nano/microscale). Here, the scientific complexity is high, and Al is well-
placed to generate candidates that meet specific optimisation criteria. The large number of
open-source databases on materials properties has facilitated the rise in use of Al models.
However, blind spots remain where Al deployment has not lived up to its potential, such as
in sectors like cement. Even at this scale, datasets can hinder Al progress: in the catalyst
space, for example, many reactions have been reported and stored in open repositories, but
useful data available to train a model targeting a specific reaction may be limited.
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Despite the opportunities for Al at the microscale, a major portion of the innovation
challenge relates to the integration of new materials into new products (i.e.at the
mesoscale). Al also has a role to play here — the battery sector, for instance, has deployed it
to improve the modelling of new cell types —but the challenge of data availability for training
Al models is more acute at the mesoscale, where data on molecular properties are less
relevant. Opportunities are emerging to train on more useful datasets — like the data on real
CCUS facilities published by some government bodies. However, these data are based on
prototypes and pilots, can be expensive to generate, and are more commercially sensitive.
Public policy has a role to play in encouraging the generation of useful databases at this scale
and facilitating more widespread access.

For some technologies, Al also has a role to play at the macroscale as new products are
integrated into new processes within the energy system. For mass-manufactured products
like batteries, Al is already used to accelerate production-scale timelines and de-risk
investment. Training data can be created from existing digitalised facilities, noting that they
are not generally open source. However, in some contexts, even with adequate training data,
the impact of Al is likely to be much more limited; in cement, for instance, the scale of the
existing industry will be tricky to displace.

As innovations come to market, the scale of the design challenge increases. At first,
innovations focus on individual molecules. This grows into incorporating these molecules
into small prototypes or demonstrations before they are deployed at scale. To be useful, Al
tools need data across these different scales that relate to both the thimblefuls of materials
used to test new catalyst designs and the operation of mega-factories where new batteries
are produced. As an innovation evolves, the training data need to evolve with it (Table 4.2).

Table 4.2 =~ Properties of datasets at different innovation scales
Data scale Nano/Micro Meso Macro

Molecular properties of Performance of battery Operational data for

Example battery electrodes cells (e.g. eff!aency, battery m;in.u.Jfacturmg
degradation) facilities
. . Prototyping, .
Innovation phase Applied research Early adoption

demonstration plants

Typical number Approximately

> illi > illi
of entries 1 million 100-1 000 1 million
Modes of Simulation, generative Al, Pilot plants, Proprietary from
origination experiment experiment operating plants
Rapid material screening, .
Key use cases of X Prototype Faster troubleshooting
. . comprehensive data .
Al for innovation . development for new designs
repository
R Some key scaling effects .
Key limitation v g Expensive to gather Rarely open source

are not included
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SPOTLIGHT

Today’s applications of Al to energy technology innovation demonstrate its tremendous
potential as a tool for innovators. However, as Al techniques improve and are integrated
more deeply into industrial machines and consumer goods, Al could become a more
fundamental source of innovation. History counsels against attempts to predict precisely
where the technology frontier will lie decades from now, but, equally, it suggests that we
will underestimate the pace of change if we think only of how Al can undertake the tasks
performed by individual research teams today.

Without major advances in prediction and testing, the ability of Al to make materials
discovery millions of times faster may only marginally improve the rate of change of
product efficiency. Once tested, the speed of uptake of a higher-performing device or
more efficient manufacturing process will still face familiar challenges of immature
supply chains, customers who steeply discount their future savings, unfamiliarity among
installers and risk-averse buyers. Recent history is littered with unsold new products
intended to optimise energy use for rational economic actors. There is no reason to
believe that the behavioural barriers and co-ordination market failures that limited their
adoption will fall away quickly.

A key question is whether Al can help develop new technologies that unblock some of
the major bottlenecks to more efficient energy use. Each year, roughly 4 exajoules (EJ) of
energy, similar to the final energy demand of Thailand, is used to produce ammonia for
fertiliser that ultimately leaches into the environment rather than being taken up by
crops. Around 30 EJ more energy than necessary is used to heat buildings that are poorly
insulated or rely on inefficient technologies. About 7 EJ of electricity is generated but
never reaches consumers due to grid losses, equivalent to the final energy demand of
Indonesia. Around 45 EJ of extra energy (nearly double the final energy demand of Africa)
is used to move vehicles rather than the people inside them. Across these four cases,
technologies already exist to save a substantial amount of the wasted energy, but they
are not used.

Today, researchers are asking Al to solve known challenges relating to the capital or
operational costs for components of existing types of devices. However, key aspects of
energy technology innovation often relate to how new inventions integrate into wider
technical and social systems. To deliver a step change in its ability to outperform or
supercharge human-led innovation, Al would need to solve challenges in a much broader
and more imprecise set of parameters, including lifetime costs, financing, culture and
traditions.

Long-term projects for data scientists and energy researchers could consider what it
would take for future Al tools to help propose, test and roll out technologies that trigger
the following outcomes. Our inability to imagine the ways in which these challenges could
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be unlocked by technology is inherent to their salience, but our realisation that Al could
generate solutions that humans cannot invent alone makes them exciting.

B High-precision application of tailored fertilisers in optimal quantities on the world’s
approximately 500 million small-scale and subsistence farms.

B Integrated design and construction of millions of highly desirable and affordable
buildings each year that guarantee zero external energy needs on a net annual basis.
B Automated public transport vehicles and associated logistics that practically

eliminate urban congestion and facilitate universal access to rural services.

B Rapidly modifiable and competitive industrial processes that can adjust to different
inputs and outputs according to economic conditions with very low levels of material
and energy waste.

B A means of deactivating radioactive waste and making it safe for low-cost disposal
without the need for centuries of monitoring and verification.

Box 4.1 > How can Al accelerate the innovation of nuclear energy
technologies?

As the world enters a new Age of Electricity, interest in nuclear power has grown to a
50-year high (IEA, 2025). The technology sector is making important investments and
commitments to nuclear power (see Chapter 2). New technologies such as small modular
reactors (SMRs) remain to be demonstrated at scale but hold promise for the fast-
growing industry because they have lower upfront investment than conventional plants,
which could be more attractive to private investors (most SMRs under development are
expected to cost less than 2 billion USD, compared to greater than 10 billion USD for
conventional nuclear in some markets). However, high levelised costs and regulatory
hurdles remain significant barriers to deployment.

Nuclear fission reactors are complex systems with multidisciplinary challenges. Al can
bring about improvement both by better integrating components within those systems
and by improving the components themselves. Generative Al has accelerated material
design by better handling the large design space of advanced alloys, more accurately
predicting material properties, and improving defect detection via image processing
(Sainju, et al., 2022). Machine learning models have optimised reactor geometry to
improve temperature control (Sobes, et al., 2021). Predictive Al has modelled strategies
for fuel loading and management to simplify operational processes (Huang, et al., 2023).
The monitoring of fission reactors can produce even more data than conventional
industries; Al can process these vast datasets better than humans and use them to
execute online condition modelling to inform predictive maintenance. Large language
models have been used to translate identified faults into transparent explanations for
operators at demonstration plants.
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While fission is entering a phase of renewed growth, nuclear fusion remains in the
experimental stage. Al therefore plays a different role: rather than primarily improving
efficiency and automation, it is being used to address fundamental scientific challenges.
In fusion reactions, maintaining stable plasma at extreme temperatures is a key challenge
where even small instabilities can be disruptive. Research at both the Swiss Plasma
Centre and the Joint European Torus in the United Kingdom has shown that
reinforcement learning algorithms can dynamically adjust magnetic fields to stabilise
plasma. Al-driven simulations and high-performance computing are also accelerating the
development of smaller, modular reactor designs for fusion. Commonwealth Fusion
Systems, for example, is using Al to refine reactor components before physical
prototyping and to optimise machine component geometry to improve efficiency and
manufacturability.

As in many sectors, data availability plagues Al deployment for nuclear power. In fusion,
data is limited because large-scale facilities conduct relatively few trials, and each
operates under unique conditions. In fission, while extensive operational data exist,
access is limited by security and commercial concerns. Therefore, the clearest Al
opportunities are those that emerge from more general research, such as material
design, or that can be developed in-house by existing players, such as machine learning
for system control.

Despite data challenges, Al has already been widely adopted by the nuclear industry.
However, the recent wave of Al growth is not likely to further accelerate nuclear fusion
deployment, or to bring SMR deployment to before 2030, because — as in many sectors
explored in this chapter — there are major non-technical bottlenecks. These are, in
particular, regulatory approval bottlenecks, long build times and challenges related to
building out new industrial supply chains. Reactor licensing and testing cycles, for
instance, are much slower than for other sources like renewables. Establishing supply
chains for the higher-purity fuel needed for SMRs also presents an emerging challenge.

Therefore, while Al holds promise for scientific development in a complex field, its impact
is constrained by the broader regulatory, economic and geopolitical factors that define
the nuclear industry. Over time, Al may also help overcome these barriers, but at present,
it appears unlikely to offer a silver bullet either for new fission reactor designs or fusion
reactors.

4.5 Policies to accelerate Al innovation

4.5.1 Innovation funding

As highlighted in this chapter, Al has the potential to significantly reduce the time associated
with energy innovation and, as a result, the cost. This is starting to be reflected in
government funding. The United States alone increased federal research, development and
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demonstration (RD&D) support to USD 170 billion in 2023, a 27% increase compared with
2019, while in China, RD&D support rose to USD 80 billion in the same period (although
tracking innovation support in China is challenging given its mixed economy).

Budgets for RD&D programmes relating to information and digital technologies have risen in
the last five years. The US Networking and Information Technology Research and
Development (NITRD) close to double its budget between 2019 and 2023, reaching close to
USD 11 billion. The European Union, beyond Horizon Europe, created the Digital Europe
programme in 2021 focused on bringing digital technology to businesses, citizens and public
administrations with around USD 1.2 and 1.1 billion allocated in the EU budget for 2024 and
2025 respectively.

Figure 4.14 > Share of Al in selected government information and digital RD&D

programmes
NITRD Digital Europe Horizon Europe NSFC
100% ..................................................................................................................
Other information
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The share of Al-related projects in information and digital RD&D programmes has
increased, by close to 45% in some cases

Note: NITRD = US Networking and Information Technology Research and Development; NSFC = National
Natural Science Foundation of China.

Alongside the increase in digital-focused RD&D budgets, allocations to Al-focused RD&D also
grew. In the United States, Al-related projects accounted for about 17% of RD&D budgets in
2019 and grew by up to 30% in the 2023 budget, driven by the support of the Executive Order
on Artificial Intelligence for the American People in 2019. In the European Union, Horizon
2020 and the subsequent Horizon Europe programmes gave awards to more Al-related
projects, growing from nearly a third to 45% of overall EU spending on digital projects. The
Natural Science Foundation of China (NSFC) has seen relatively slower growth in the Al share.

Specific programmes targeted at Al applications in the energy sector are yet to emerge.
Canada’s Digital Accelerator funds foster the development of energy infrastructure
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embedded with Al and digital applications, while the US NITRD instead funds specific
agencies, including the Department of Energy receiving between USD 110 million and
USD 180 million annually since 2019.

Figure 4.15 = Share of Al and energy projects in US NITRD programmes
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Non Al-related
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billion

UsD 10.5 u Non energy-related Al

billion
Energy-related Al

IEA. CCBY 4.0.

Although the share of Al-related projects has risen in the past five years,
the share awarded to the Department of Energy has remained constant over time

Note: 2024e = estimated values for 2024.

4.5.2 Data, models and computing infrastructure

High-quality, publicly funded datasets form the foundation of virtually all significant Al
breakthroughs across fields such as biology, materials science and weather modelling. These
datasets enable Al models to learn from vast scientific knowledge and make predictions that
drive advancements in drug discovery, materials design and climate forecasting.

Scientific datasets are generated through various methods: some, like the Protein Data Bank
(PDB), rely on global contributions from researchers, while others, like the ERA5 hourly
climate and weather dataset, are developed by specific organisations and made publicly
available for follow-on research. By reducing the need for individual research groups to
generate their own costly datasets, these open resources facilitate global collaboration and
accelerate scientific discovery.

However, maintaining and expanding these large-scale open databases comes with
significant costs, which can vary depending on the method of data acquisition.
Experimentally derived datasets, such as the PDB, require extensive laboratory work and
specialised equipment. The cost of experimentally determining each protein structure in the
PDB is estimated at approximately USD 100 000, implying a total replacement cost of around
USD 20 billion for the entire database.
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Figure 4.16 > Indicative number of open-access databases available for Al
training by the scale of the innovation problem
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Although they can be expensive to produce, there are numerous large, high-quality
databases of molecular properties — but later innovation stages are less well represented

Note: The bubble area represents the typical number of entries per dataset.

In chemistry and materials science, the cost of producing each entry in a materials database
can be significantly lower, at about USD 10 to USD 1 000 per data point, depending on the
complexity of experiments. For this reason, there are a number of computationally derived
datasets at the molecular or microscale that have lower costs per entry (Figure 4.16), such
as the Open Quantum Materials Database. The overall cost, however, can still be high,
requiring substantial infrastructure investment, including high-performance computing
resources, expert labour and ongoing maintenance. Using physical experimentation rather
than computation to generate datasets is more expensive per entry; the cost of acquiring
data for the National Renewable Energy Laboratory’s High Throughput Experimental
Materials Database is estimated at about USD 200 per data point for its 140 000 entries.

These costs can greatly outweigh the costs of training scientific models. This cost structure
can drive a strategic shift in resource allocation for innovation. Rather than mirroring the
computing-intensive approach of consumer Al, scientific innovation would benefit more
from concentrated investment in high-quality data collection, curation and validation.

The challenge extends beyond cost. While publicly funded research produces vast amounts
of scientific data, often on small operating systems at the useful mesoscale for innovation,
much of it remains unstructured, unstandardised or difficult to access. At this scale, datasets
do not need to be very large to be valuable — less than a thousand entries can be effective in
training or fine-tuning predictive Al to understand how new materials incorporated into
actual devices could behave. Simultaneously, valuable commercial and industrial datasets at
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the macroscale remain siloed behind proprietary barriers. Without the scientific
collaboration that comes from open access to this macroscale data, new innovations that
exploit Al using open-access datasets at the molecular scale can flounder. Creating
interoperability between public, private and academic data resources through standardised
formats and collaborative frameworks would dramatically enhance both the scope and
accuracy of scientific Al models. However, ensuring that these datasets remain open, well-
maintained and accessible requires substantial and sustained public investment.

The expansion and upkeep of public scientific databases will continue to demand significant
computational infrastructure, including traditional supercomputers, cloud-based platforms
and Al-specific accelerators. Leading scientific supercomputers can cost upwards of
USD 500 million, a fraction of the cost of the largest commercial generative Al training
clusters.

Figure 4.17 > Cost breakdown of scientific versus consumer Al models
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While scientific Al models have lower training and inference costs than consumer
generative Al, they rely on scientific data that are costly to reproduce and validate

While public funding for Al has largely focused on the development of Al models and direct
support for data centre development, ensuring the long-term success of Al-driven scientific
innovation requires a more strategic approach that goes beyond hardware investment.

This suggests that research ecosystems must incentivise continuous additions of empirical
data to open repositories. This means creating frameworks where experimental results from
both academic and industrial sources — successful and unsuccessful — are fed back into
publicly accessible datasets, enriching the knowledge base for future Al applications.
Ensuring that results and datasets augment one another in virtuous cycles is key to
supporting Al-driven innovation in scientific fields.

202 International Energy Agency | Energy and Al



4.5.3 Conclusions and future directions

The analysis in this chapter makes the case for using policy to accelerate Al-driven energy
innovation for the achievement of energy and climate goals, economic growth, improved
security and greater affordability. The following conclusions are aimed at guiding policy
makers towards this goal:

While they are only partial indicators of innovation activity, data on patents and start-
ups suggest that Al-first approaches to innovation are currently under-represented in
the energy sector. Similarly, although government research, development and
innovation spending dedicated to Al has seen an increase, available data suggest that
energy-related Al applications remain under-represented.

The potential for Al to accelerate energy innovation is great but poorly mapped. A few
applications, notably battery chemistries, have garnered most of the public attention.
However, potentially transformative energy technologies where Al could play a role in
accelerating innovation are numerous (see Table 4.1 for an indication). A first step
would be the more comprehensive mapping of promising technology areas and the
development of a corresponding inventory of current Al-based tools (datasets, models,
etc.). The analysis in this chapter represents a step in this direction, but there is far more
to do.

Al approaches currently excel at accelerating the discovery of things like molecules,
enzymes and catalysts, that is, domains where Al models can be built to understand and
simulate highly complex but deterministic physical or chemical interactions. Data
availability for model development is higher in these fields, but there are still numerous
gaps. Public investment in data generation, research consortia and open-source data
curation will be needed.

Even after promising new technology components are identified, much of the effort and
risk of energy innovation lies in their integration into new products and the integration
of new products into industries. Here Al can play a strong role but one that needs public
policy support as well. Investment in energy-specific high-throughput experimentation
equipment and self-driving laboratory technologies is likely to be highly beneficial.
Public policies to support the generation and publication of datasets at the level of
product integration (e.g. battery prototypes) would support researchers in testing and
scaling promising new products more quickly.

Finally, regulators and downstream users will need to reflect on what needs to be
adapted in their processes. As Al provides increasingly powerful prediction tools,
adapting testing and certification protocols may be important.
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Chapter 5

Emerging themes on energy and Al
Implications for economies, businesses and people

SUMMARY

e Artificial intelligence (Al) applications address various dimensions of energy security,
including adequacy of energy, affordability, system resilience and the system’s ability
to emerge from shocks or disruptions. For example, Al-driven simulations have helped
reduce operational costs in various processes. Predictive maintenance is being
deployed to reduce infrastructure downtime and improve operational efficiency.
Predictive analytics has been helping improve grid stability.

e Simultaneously, the security of energy supply chains is itself critical for the roll-out of
Al. The electricity system is subject to several critical bottlenecks. These include
stretched supply chains for critical components, long lead times for generation and
transmission projects, and complex and time-consuming permitting processes. A key
consideration is the demand for critical minerals, the supply of which is highly
concentrated. For example, in 2030, data centre demand for gallium could equal up
to 11% of today’s supply, and China accounts for 98% of gallium refining.

e Data centres are new actors in electricity systems — at least at the scale of the
projections being driven by Al deployment. In the United States, the installed capacity
of data centres is projected to consume a similar share of peak power demand as the
entire industrial sector by 2035 in the Base Case (as introduced in Chapter 2). The
energy industry and technology sector need to deepen dialogue to develop a shared
“playbook” for how to efficiently integrate data centres into electricity grids.

e Cumulative data centre investment totals USD 4.2 trillion to 2030 in the Base Case. To
cater for data centre growth, power sector investment will need to cumulatively reach
USD 480 billion over the next five years globally, with nearly half of that taking place
in the United States. Data centre-related power sector investment in the
United States is over 15% of its total power sector capital expenditure in this period.

® Emerging market and developing economies face several barriers to the scaling up of
data centre capacity on the one hand and Al-led solutions in the energy sector on the
other. By improving the quality of power supply, fostering local data collection,
developing talent and creating robust policy frameworks, such economies can harness
Al to drive more inclusive, future-proof growth.

e Data centres are on track to account for 3% of the power sector and 1% of total energy
sector emissions by 2030. They are among the few sectors that show emissions
growth to 2030. Widespread adoption of today’s Al applications could lead to
emissions savings in other sectors that exceed data centre emissions in 2035.
However, such Al adoption is not guaranteed and could be negated by rebound
effects and increased consumption of fossil fuels induced by Al-enabled lower prices.
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5.1 Introduction

Global discussion on the rise of artificial intelligence (Al) has been dominated by themes of
energy demand from data centres, specifically Al-related compute, the sustainability of
meeting this demand, and Al-led advancements in science and innovation. These themes
were covered in depth in the preceding chapters. This final chapter brings together these
emerging themes of energy for Al, and Al for energy. They include the policy and regulatory
landscape that affects Al and energy; the impact of Al on energy security and the energy
security concerns that may affect the future of Al; the net impact of Al on emissions; the role
of Al-related skills in the energy sector; the specific issues of emerging market and developing
economies; and the investment implications of the rise of Al.

Al is being deployed in a broader social, political, geopolitical and economic context. The
impacts of the energy needed for Al, and of Al on the energy sector, will go beyond first-
order issues of demand and supply. Factors external to the energy sector — including
industrial supply chains, investment frameworks and capital availability, and digitalisation
trends in different economies — will also influence the outlook. Indeed, some of these
connections are surprising and highlight the links between different policy areas. For
example, it is generally not well understood that data centres depend on complex, stretched
and often concentrated supply chains for critical minerals or power transformers.

This report has been made as comprehensive as possible, covering the demand outlook,
supply scenarios and Al applications across energy optimisation and innovation. However, a
consistently reoccurring theme across it is the need for further work to understand the
uncovered issues in more detail. To return to the example noted above: despite the
importance of critical mineral use in data centres and the associated infrastructure, there are
very limited and often highly contradictory publicly available data on the mineral intensity of
data centres as a whole and of individual data centre components. This is a major gap.

Even on the demand side, which has been well studied, there is a difference of more than a
factor of seven between the highest and lowest published projections for global data centre
electricity demand. The broader literature on demand projections is — to put it mildly — highly
divergent, difficult to interpret and confusing for policy makers and investors. Although some
uncertainty is inevitable, particularly in a new, fast-moving technology field, more must be
done to narrow it and equip all actors with the tools needed to make informed decisions.

Another emerging theme of the report is the importance of enhancing the dialogue between
the technology sector and the energy industry. Both are complex, multifaceted sectors,
subject to their own constraints, incentive structures, and infrastructural and policy systems.
However, the rise of data centres as a major actor within the energy sector is a new trend —
at least at the scale being seen today. Addressing the challenges and opportunities that Al
brings will require both sides of this equation to deepen their engagement even further.
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5.2 Energy security in the age of Al

The nexus between energy and Al has implications for energy security. There are at least
two broad dimensions to this relationship. The first arises from the impact of Al on energy
security. Al can be — and indeed already is being — applied to address specific challenges
relating to energy security concerns. At the same time, greater digitalisation and connectivity
in the energy sector —which enable the use of Al —can create new energy security challenges.
The second dimension arises from the need to mitigate energy sector-related supply chain
risks, which have implications for the scaling up of data centres to meet the growing demand
for Al

5.2.1 Applications of Al that enhance energy security

Energy security is characterised by several elements that include, but are not limited to, first,
reliable access to energy to meet an economy’s needs; second, the affordability of this
energy with limited volatility in prices; and third, resilience against energy market shocks —
or the ability of the energy system to quickly recover from them. Al applications that address
one or more of these dimensions include:

B Reducing energy costs: Al applications are being used in a range of applications,
including in resource evaluation and the optimisation of processes, leading to the
acceleration of development times and reduction of costs. For example, the application
of Al-driven simulations has been estimated to reduce costs by nearly 10% in offshore
oil operations. Similar outcomes are observed with renewables, for example where Al
models have been deployed to optimise wind farm operations, leading to a reduction in
operational costs.

®  Securing critical energy infrastructure: Al has applications in ensuring the security of
critical energy infrastructure in places that are typically hard for humans to access. For
example, following the sabotage of the Nord Stream pipeline in 2022, NATO’s Critical
Undersea Infrastructure Coordination Cell has been exploring the use of unmanned
maritime systems enabled by Al that could help identify suspicious underwater activity
and prevent disruptions to energy supply (WSJ, 2025).

®  Energy system resilience through better weather forecasting: Accurate weather
forecasts and analysis of changing weather patterns in a warming world are essential to
optimise the operation, planning and resilience of energy systems. Weather forecasting
computation times can be cut from several hours to just a minute by Al applications,
using one-thousandth of the electricity (discussed further in section 3.6).

B Predictive maintenance to enhance reliability: Al-based predictive maintenance is
revolutionising energy infrastructure management by ensuring reduced downtime and
improved operational efficiency.

®  Predictive analytics for grid stability and enhanced integration of renewables: As the
share of variable renewable electricity generation rises, Al algorithms can improve the
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dispatch of energy resources, crucial for handling electricity systems with a high share
of renewables. The enhanced integration of domestically generated renewable energy
also reduces dependence on imported fuels.

Cybersecurity enhancements to protect critical infrastructure: As energy systems are
becoming increasingly electrified, integrated and connected, their vulnerability to
cyberattacks has also increased. Al-enabled cybersecurity features, such as enhanced
threat detection and more responsive protection, can help secure energy systems. On
the flip side, Al can also be used to make systems more vulnerable, as discussed in
Box 5.1.

These are just a selection of the categories of Al-led interventions that work to enhance
energy security, unlocking greater affordability, resilience and reliability and ensuring
adequate supplies to meet domestic demand. There are yet others that work towards the
same outcomes, such as reduced import dependence through greater energy efficiency and
enhanced domestic generation of electricity.

Box 5.1 = Al and cybersecurity in the energy sector: A two-way street

As the energy sector has become more electrified, digitalised and connected, it has also
grown increasingly vulnerable to cybersecurity threats. This vulnerability is compounded
by the presence of legacy information technology (IT) infrastructure, automation, cloud
computing and reliance on third-party vendors that might not have secure systems (IEA,
2021a). Intrusions by malicious actors have exposed critical infrastructure to disruptions,
with implications for the economy, safety and geopolitical tensions. There have been
multiple instances of attacks on energy systems since the first known instance where a
cyberattack led to a blackout in Ukraine in 2015 affecting 225 000 people (IEA, 2020).
These include a malware attack on Mumbai’s electrical grid that led to blackouts in India’s
financial capital in 2020 (India Today, 2021), and the cyber ransom attack in 2021 that
led to the disruption of operations at the world’s largest oil pipeline system, which
supplies 40-45% of fuel in the eastern United States (IEA, 2021b). Analysis shows that a
typical gas and electricity utility faced over 1 500 attacks per week in 2024 (Checkpoint,
2025), triple the number four years earlier (IEA, 2023a).

These episodes underscore the need for energy systems to become more resilient to
cyberattacks. Al acts as a force multiplier in both directions, enhancing threat detection
and enabling more responsive protection on the one hand while simultaneously
empowering adversaries with tools for sophisticated attacks on the other. Al applications
can enable real-time threat detection, automated responses to incidents and enhanced
phishing defences. On the flip side, Al-based tools can also be exploited to automate
attacks and evade detection. Generative Al tools have been documented as being used
by malicious actors for reconnaissance to target organisations, obtain deeper access to
target networks, and for malicious scripting and evasion techniques (Google, 2025). In
view of these evolving threats, the deployment of more proactive Al-enabled
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cybersecurity systems that are quick to respond to threats is critical for ensuring the
resilience of the energy sector. Upskilling, threat mapping and expertise sharing will be
essential for keeping the energy sector ahead of the curve.

Figure 5.1 = Cyberattacks per week per energy organisation, 2020-2024

2020 2021 2022 2023 2024

IEA. CCBY 4.0.

In 2024, a typical energy organisation, such as a gas or electricity utility,
received over 1 500 cyberattacks, triple the number only four years earlier

Source: Checkpoint (2025).

5.2.2 The security of energy sector supply chains for Al

Securing the supply of affordable and reliable power for data centres is at the heart of the
challenge of energy for Al. This section will explore the security of supply chains for Al,
including electricity generation, transmission, power equipment and critical mineral supply.

Electricity supply for Al

While renewables currently supply over a quarter of data centre electricity, natural gas and
coal still play significant roles, especially in the United States and China. To meet growing
demand in the future, some technology companies have been supporting new supply
options, including nuclear, advanced geothermal and long-duration storage. Section 2.5 in
Chapter 2 contains an in-depth discussion on meeting the energy demand from data centres.

Meanwhile, some energy companies have been proactively planning dedicated power
generation facilities or energy supply to meet data centre demand. For example, US oil and
gas supermajor Chevron has partnered with Engine No. 1 to develop 4 gigawatt (GW) gas-
powered “power foundries” with turbines from GE Vernova in the United States, bypassing
transmission grids. The initiative also leaves open the option of incorporating carbon capture
and storage, and renewable energy. Similarly, Exxon Mobil is considering a similar model,
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with a 1.5 GW gas-fired power plant to supply hyperscaler data centres, and plans to add
carbon capture and storage that could potentially capture over 90% of the emissions. Box 5.2
explores the wider implications for international gas markets of US gas meeting the demand
from data centres.

Box 5.2 > Natural gas for data centres in the United States

Natural gas demand to power data centres is expected to grow by nearly 35 billion cubic
metres (bcm) globally between 2024 and 2035 in the Base Case and as high as 55 bcm in
the Lift-Off Case. Most of the additional demand in both cases arises in the United States,
which continues to enjoy abundant resources from its shale gas and tight oil plays. The
prolific Permian, Haynesville and Marcellus Basins have underpinned recent growth in US
natural gas production, which reached nearly 1 200 bcm in 2024. Around 80% of this
supply was consumed domestically, with 10% exported as liquefied natural gas and the
remainder as pipeline exports.

We assessed the economics of gas in the United States to consider the impact of
additional demand from data centres on break-even prices. We considered dry shale
plays as a proxy for the wider market, even though some of the incremental gas could in
practice come from resources that are cheaper (i.e. associated gas) or more expensive
(such as conventional or tight gas), depending on where the demand centres are located.
Because the US shale gas supply curve is long and shallow — that is, the resource base is
abundant and most of it relatively cheap to develop —the increase in the break-even price
that is needed to meet the additional demand from data centre usage in the Lift-Off Case
is very small; we estimate that it is less than 1.5% of the Henry Hub price in 2035, which
we project to be USD 4 per million British thermal units. The US gas resource base thus
appears well placed to absorb the demand increases from data centres.

However, it is important that gas suppliers have clear visibility of the scale of data centre
demand growth. For example, in the Lift-Off Case, if gas-fired power generation met the
entire increase from data centre demand in the United States over the next decade, it
would require over 100 bcm by 2035, an amount larger than the planned increase in
liquefied natural gas export capacity during this period. Price impacts could therefore be
far larger if this additional demand were not planned for in the form of sufficient
upstream investment, pipeline takeaway capacity or supply agreements with utilities and
data centre operators.

Grid infrastructure for Al

In addition to energy supply for data centres, the availability of power transmission
infrastructure is also a key determinant of energy security for Al. As discussed in Chapter 2,
data centres have seen long queues for connections to the grid, with delays as long as
10 years in some key markets. Around one-fifth of global data centre buildout in the
Base Case is at risk of delay due to grid bottlenecks. Section 5.2.3 explores how the smart
deployment of data centres can help mitigate transmission-related risks.
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Power equipment supply chains for Al

The growing expansion of Al data centres has amplified the urgency of addressing power
equipment supply chain constraints. Infrastructure expansion across multiple regions has
placed considerable pressure on the supply chain for key grid components. The heightened
demand extends beyond equipment for high-voltage transmission to include low-voltage
solutions, the integration of variable energy resources and new consumer demand, making
supply chain resilience more critical than ever.

A survey by the IEA shows that high demand for cables and power lines has significantly
driven up prices. Cable prices have nearly doubled over the past five years; they stabilised in
2022 before rising again due to increased demand for high-voltage cables in major
infrastructure projects. Power transformer prices have also surged since 2022, with costs
varying widely according to complexity and design, in some cases reaching 2.6 times pre-
pandemic levels in real terms. Challenging installation conditions further escalate costs.
These price increases are adding pressure to already strained supply chains and investment
plans for transmission infrastructure. Transformer lead times have nearly doubled in the past
two to three years, with major manufacturers facing record order backlogs.

Figure 5.2 = Increase in power fransformer order backlog in selected
manufacturing companies, 2020-2024
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Note: Based on order backlogs of Hitachi Energy, Schneider Electric, Siemens Energy, GE Vernova.

The global market has responded positively to the demand surge in power equipment,
announcing capacity expansion plans and new investment. However, scaling up
manufacturing capacity for key components takes time, typically requiring three to
four years for a cable manufacturing facility, for example. While investment in capacity
expansion is underway, long lead times for new capacity, material price volatility and
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international trade dependencies pose challenges. Ensuring long-term visibility of future
demand, strategic sourcing and supply chain resilience will be key to meeting the escalating
demands of the Al energy landscape.

Power transformer manufacturers have increased capacity, with international trade gaining
relevance. Between 2018 and 2023, global trade in power transformers increased by 80%,
with China, Italy, Korea and Turkiye collectively accounting for half of the total trade and
China alone contributing a quarter. On the import side, both the United States and Europe
have more than doubled their trade value for power transformers since 2018, with the
United States primarily sourcing from Mexico, Europe and Korea.

Figure 5.3 > Value of transformer imports from top three exporters by
importing country or region, 2024
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For many importers, the top three exporters of transformers
account for over half of imports

The demand for grid infrastructure has driven up component costs, alongside other factors
such as inflation, disruption to global logistics, material price volatility and rising energy costs
in some markets.

The need for essential materials includes copper, steel, grain-oriented electrical steel and
aluminium. Grain-oriented electrical steel alone represents around 20% of the cost of a
power transformer, while insulation, copper and aluminium together constitute around half
of the total expense. Material prices surged in 2022, particularly for aluminium, before
stabilising in 2023 as supply outpaced demand. Grain-oriented electrical steel prices doubled
between 2021 and 2023, adding further cost pressures onto manufacturers; it is 60% more

expensive today than it was four years ago. Copper prices were relatively stable throughout
the period.
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This increasing strain on power equipment supply chains has significant implications for the
development of the infrastructure needed to support Al-driven energy demand. Ensuring
supply chain resilience through long-term planning and strategic policy support will be
essential for meeting the demands of Al infrastructure.

Critical mineral supply chains for Al

Besides the additional electricity demand, a major consideration related to the rapid growth
of Al and data centres is the demand for critical minerals. Apart from bulk materials like steel
and concrete, the construction of data centres requires sizeable amounts of several minerals
and metals, such as copper, aluminium, silicon, gallium, rare earth elements and battery
minerals. There is a significant overlap between the minerals needed for building new data
centres and those that are critical to energy technologies (IEA, 2024a).

Copper is one of the most essential building blocks for data centres due to its excellent
conductivity and durability. It is used in power distribution systems (cables, busbars and
switchgear), in high-performance networking and data cables, and in cooling infrastructure
for heat exchangers and pipes. Silicon, especially ultrapure silicon, is the main
semiconducting material used in processors and high-speed memory and storage
components. Gallium, usually in the form of gallium nitride or gallium arsenide, is
increasingly being used for high-frequency and high-efficiency power converters and radio
frequency components. Aluminium plays a key role in structural components, such as server
racks, casings and mounting structures, as well as in heat sinks and cooling plates in cooling
systems thanks to its light weight and superior thermal conductivity. Rare earth elements,
particularly neodymium, praseodymium, dysprosium and terbium, find applications in high-
performance magnets for motors in cooling fans, precision actuators, hard drive assemblies
and, in much smaller quantities, optical components. Battery minerals are used for lithium-
ion batteries that are contained in uninterruptible power supplies and backup energy storage
components.

As in the case of energy or water use, the lack of granular data pertaining to the design, type
and volume of specific components (chips, processors, cooling equipment, storage systems
etc.) used in different types of data centres is an obstacle to assessing precisely the impact
of the rapid growth of Al on the implied critical mineral demand. Our estimates indicate that
the demand for minerals from projected data centre capacity expansions in 2030 as a share
of their total demand in 2024 could reach up to 2% for copper and silicon respectively, over
3% for rare earth elements and 11% for gallium (Figure 5.4). Although data centres do not
represent a major share of the total demand for these minerals, the absolute volumes in
2030 still reach 512 kilotonnes (kt) of copper and 75 kt of silicon, so project developers have
good reason to pay attention to supply security.

Mineral supplies in the coming decade need to account for the additional demand from data
centres. Several sectors, such as defence, clean energy technology manufacturing,
construction, aviation and data centres, will be competing for the supply of these critical
minerals in the future. Some minerals, such as copper, face a looming gap between projected
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demand and expected supply from announced projects — a challenge that could be further
exacerbated by additional demand from data centres (IEA, 2024a).

Figure 5.4 = Demand for critical minerals required to meet the growth in data
centre capacity in 2030 as a share of their total demand in 2024
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Data centire growth to 2030 will have varied impacts on mineral demand; the share of total
demand is small for traditional metals, but security of the mineral supply will still be critical

Note: The bands for each mineral represent the estimated range of their demand from Al data centres in 2030
as a share of their total demand in 2024.

The geographical concentration of the supply of most critical minerals is another key
concern. In 2024 nearly 60% of the refined supply of copper, around 90% of aluminium and
over 90% of silicon, magnet rare earths and gallium originated from the top three producing
countries (Figure 5.5). This high market concentration highlights significant vulnerabilities to
supply shocks if, for any reason, supply from large producers were to be disrupted, whether
from extreme weather events, industrial accidents, trade disruptions or geopolitics.

In recent months, trade restrictions affecting critical minerals have proliferated, notably in
the form of export controls. In December 2024, China restricted the export of gallium,
germanium and antimony — key minerals for semiconductor production — to the
United States. Latest reports show that gallium prices outside China more than doubled
between July 2023 and December 2024 (Financial Times, 2024). At the same time, China
announced further export controls on graphite (essential for lithium-ion battery anodes).
These were followed by additional export control announcements in February 2025 on a
range of materials, including tungsten, tellurium, bismuth, indium and molybdenum — key
minerals primarily used in high-technology and defence applications, including data centres
(micro-processors and diodes). These developments underscore the need for vigilance of the
security risks arising from high supply concentration. Disruptions to critical mineral supply
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can have major impacts on technology and equipment costs for data centre development,
with ripple effects for consumers and the broader economy (IEA, 2025a).

Figure 5.5 > Geographical concentration of the supply of selected refined
critical minerals needed for data centre expansion, 2024
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Note: DRC = Democratic Republic of the Congo.

5.2.3 Smart integration of data centres to mitigate risks

Even in the Base Case, the buildout of data centres is remarkably rapid. In the United States,
the region most affected, data centre total installed capacity increases from 6% of system-
wide peak electricity demand today to 13% by 2030. In the Lift-Off Case this rises to 16%.
Data centres are poised to go from peripheral to central actors within the electricity system,
with their share of peak demand comparable to that of the entire industrial sector of the
United States in some of the cases (Figure 5.6).

Although the absolute scale of the electricity supply and grid investments needed is not the
most pressing issue, the speed of development is. The electricity system is subject to several
critical bottlenecks that may make building out the system and connecting new data centres
a challenge. These include stretched supply chains for critical components (see above), long
lead times for generation and transmission projects, and complex and time-consuming
permitting processes. Looking at these bottlenecks together, our analysis finds that around
one-fifth of global data centre capacity additions could be delayed if they are not addressed.
Connection queues for data centres are already long in several geographies.
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Figure 5.6 = Data centres’ share of peak electricity demand and industry’s
share of peak demand, United States
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The installed capacity of data centres exceeds 10% of peak electricity demand in the
United States in 2030 and exceeds that of the entire industrial sector in some cases

Several actions are necessary to overcome these challenges:

m  Clarifying the connection queue and capacity ramps of data centres: Grid operators are
often faced with multiple connection requests of uncertain credibility, as data centre
developers seek approval in multiple markets. For data centres that are approved, the
roll-out schedule for IT equipment within the data centre is often unclear, meaning that
transmission system operators face an uncertain trajectory for actual demand. Utilities
should implement policies and incentives that support the rationalisation of the
connection pipeline and work together with developers to develop better visibility of
roll-out schedules. Grid operators can also contribute to a robust information
environment for investment decisions by providing tools such as grid capacity maps and
clear grid expansion plans.

®  Accelerating permitting for new generation and grids: Recent years have seen a sharp
policy focus in many jurisdictions on reducing permitting times for new electricity sector
assets, and there has been some progress in this regard. However, there is still more to
do. Regulators need to ensure they have adequate staff, resources and expertise and
that permitting processes are clear and timely. They can also explore the potential role
of Al tools in accelerating these processes. Identifying priority areas for data centre
deployment and special procedures for project approvals within these areas could also
be explored. Likewise, it is critically important that grid operators undertake robust long-
term planning and anticipate future load growth in their investment programmes and
outlooks.
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B Integrating data centres into the grid: Recent pilot projects highlight several areas that
could be explored to make data centres more grid-friendly actors, and therefore
facilitate their deployment. They include incentivising more grid-friendly locational
choices, in particular for latency-tolerant Al loads; exploring the deployment of backup
power, energy storage assets or captive power assets to reduce or make more flexible
the connection with the grid; innovating new technologies that could be integrated into
data centres to make them more flexible, such as thermal energy storage for cooling
load management; and making data centre workloads more flexible, where possible.
However, data centres are new actors in the electricity grid — at least at the scale being
seen today. There is a need to enhance understanding among energy regulators and
policy makers of their technical constraints, operational characteristics and sensitivity
to policy incentives. It will be important for the energy sector to work with the
technology sector to develop a shared “playbook” that respects the unique constraints
faced by both actors while facilitating smarter integration of this important new load
into electricity systems.

5.3 Enhancing the dialogue between the technology
sector and the energy industry

5.3.1 Better understanding the outlook for demand

The energy sector is faced with substantial uncertainty about how the demand outlook for
Al and data centres will evolve. In all published scenarios for global data centre electricity
demand, even for those published since 2020, there is a wide range of projections
(Figure 5.7). Even data for the most recent years vary greatly: for 2023, the highest estimate
published in these studies is three times the IEA’s estimate for global electricity demand from
data centres in that year. For 2030, the highest scenario in these published studies is close
to twice that in the IEA’s Lift-Off Case; and in the scenario literature, the highest is nearly
seven times that of the lowest for 2030.

This level of uncertainty in the outlook makes investment, infrastructure planning and policy
making challenging. This is exacerbated by the difference in lead times between energy
infrastructure and data centres. Some uncertainty in the outlook is inevitable, even for more
established sectors such as renewable electricity generation; policies change, technologies
evolve in non-linear ways, and economic or geopolitical events hold surprises. The problem
is not so much uncertainty but rather the limited understanding of the current situation on
the ground and what factors influence the outlook. Better understanding of these drivers
would enable more coherent interpretations of real-world events and avoid sudden revisions
in expectations (as the market saw with the release of DeepSeek-R1).
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Figure 5.7 = Third-party scenarios of data centre electricity demand
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Source: IEA analysis based on Kamiya and Coroama (2025).
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mitigate uncertainty, stronger dialogue between the energy and technology sectors will
required on several topics:

Better characterising the link between Al demand and energy demand: Currently,
comprehensive data are scarce on both the electricity consumption of different kinds of
Al services, levels of real-world uptake and the future outlook for Al service demand.
This makes it difficult for analysts to establish a link between real-world developments
in Al (such as the release of DeepSeek-R1) and the outlook for energy demand.
Projections for data centre electricity demand are only indirectly connected to Al via
second-order variables, such as server shipments or gigawatts of installed data centre
capacity.

Establishing methodologies for projecting electricity consumption from data centres:
There is a wide divergence in assumptions for critical variables in modelling data centre
electricity consumption, and frequent misinterpretation of the important variables, such
as installed IT capacity versus maximum designed capacity, both in the media and in
analytical studies.® The technology and energy sectors need to come together to
develop and share common methodologies and definitions, catering for different levels
of complexity, from the media discourse to academic studies. Some of these

1 See Chapter 2, section 2.1.2 for definitions.

218 International Energy Agency | Energy and Al



assumptions need to be informed by closer dialogue with the technology sector, but
many are available in the academic literature, albeit in a dispersed and often non-
harmonised manner. The data and methodological annexes to this report are an effort
in this direction.

Better data for analysis and decision making: Analysts looking to estimate or project
data centre electricity consumption are hampered by a lack of data on numerous points.
Most critical are shipments of both accelerated and conventional servers, historical data
on the installed IT power of data centres and data on the data centre project pipeline.
These data are available, but often only partially, and typically through expensive data
licences from one or more third-party providers, which limits access and dissemination.
Commercial operational data, such as power usage effectiveness, utilisation rates and
idle power ratios, are useful, but for the purposes of energy modelling, industry
averages by type of data centre and country are needed. Efforts are needed to gather
and publicise this data to enable more robust analysis.

5.3.2 Leveraging the innovation potential of the digital sector

The digital sector is an important actor in energy sector innovation. Since 2015, it has been
responsible for around 5% of total venture capital going to energy-related start-ups, although
in some years its share has been as high as 20% (Figure 5.8). In recent years, digital sector
venture capital spending has declined, following the broader trend of lower venture capital
spending in energy start-ups in the face of tighter monetary conditions.

Figure 5.8 = Venture capital investment by the digital sector in energy-

related start-ups, 2015-2024
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Since 2015, the digital sector has been responsible for around 5%
of venture capital funding going to the energy sector
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Interesting patterns emerge when exploring more detailed allocations (Figure 5.89). Since
2020, over two-thirds of digital sector corporate venture capital going to energy has focused
on electrified transport and adjacent sectors such as lithium-ion batteries. Despite their
growing importance as power consumers, only around 15% of digital sector venture capital
has gone to electricity-related applications, and of this, the largest share went to nuclear
fusion. Around 4% went to start-ups working on efficiency in data centres and information
and communications technology (ICT) equipment. Digital sector venture capital investors are
likely to be focused on technology areas where the potential for disruption using data-driven
business models is perceived to be high.

The digital sector innovates in other ways beyond its corporate venture capital spending, and
its high capital expenditure incentivises innovation by others. The “big six” US-based digital
companies spent around USD 250 billion on research and development (R&D) in 2024, up
from USD 50 billion in 2015. They are also active in acquiring companies, some of which are
energy-related (e.g. Waymo and Nest Labs were both acquired by Google). Their
procurement strategies drive innovation in the electricity system (see Chapter 2).

Figure 5.9 = Venture capital investments by digital firms in energy-related
start-ups, detailed breakdown, 2020-2024
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Over two-thirds of venture capital funding from the digital sector to
energy-related start-ups went to electric mobility

In the medium term, the digital sector will play a greater role in the energy sector as demand
from data centres rises. Chapter 2 noted the challenges facing the electricity system in
accommodating the rapid rise of data centres but also the opportunities for innovations at
the system level (e.g. peak shaving and flexible data centre operations) and at the product
level (e.g. thermal storage technologies) to help in this integration challenge. Leveraging the
innovative firepower of the digital sector in this regard would benefit from closer dialogue
with the energy sector to identify promising technologies and collaborations.
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Box 5.3 > The technology sector, voluntary decarbonisation commitments
and carbon credit markets

Many technology companies have made strong commitments to sustainability, aiming to
reduce their own emissions and those of their supply chains. Alongside low-emissions
electricity procurement, investments in promising energy start-ups and their own R&D
budgets, some technology companies are also buying carbon credits to offset their
remaining emissions.

Figure 5.10 = Credit retirements and advance purchase commitments of
the top technology companies, 2020-2023
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Technology companies, led by Microsoft, have purchased and retired mostly credits
from carbon removal projects and formed coalitions to drive the demand forward

Notes: CDRs = carbon dioxide removals; NBS = nature-based solutions. Dates reported are based on fiscal
years observed in the United States. Results for Microsoft in fiscal year 2023 apply to 30 June 2023; results
for Apple to 30 September 2023. Data on retirements include transactions made on the following
registries: Verra's Verified Carbon Standard (VCS), Gold Standard, Climate Action Reserve and American
Carbon Registry. Some retirements are anonymous, so the reported data may be underestimated. Data
on coalitions include the collective pledges made by the coalitions, namely Frontier (Stripe, Google,
Shopify, McKinsey & Company, Autodesk, H&M, JP Morgan Chase & Co., Workday and Salesforce),
Symbiosis (Google, McKinsey & Company, Meta, Microsoft and Salesforce) and LEAF (Microsoft).

Sources: IEA analysis based on Apple (2025), Microsoft (2024), Quantum Commodity Intelligence (2025),
and CDR.fyi (2025).

Technology companies have notably purchased carbon removal credits or made forward
purchase commitments, with a mixed portfolio of technology-based removals (such as
direct air carbon capture and storage) and nature-based solutions (such as reforestation
projects). For instance, Microsoft has a goal to be carbon negative by 2030, intending to
reduce and then remove the remaining carbon from the atmosphere that it emits, and
to eliminate by 2050 all carbon emissions it has produced since its founding in 1975.
Google has also committed to becoming net zero in 2030, and in 2024, it contracted for
over USD 100 million worth of carbon removal for future delivery.

Chapter 5 | Emerging themes on energy and Al 221



Technology companies are also participating in coalitions of buyers of credits, which
intend to drive the market forward by signalling a greater demand for high-quality carbon
removal credits. Examples include Frontier, comprising Google, Shopify and Stripe,
among others, which made an advance market commitment to buy USD 1 billion of
technology-based removals by 2030, and Symbiosis, comprising Google, Meta and
Microsoft, among others, which pledged to purchase 20 million future nature-based
solution credits by 2030. In March 2025 Amazon also launched its Sustainability Exchange
initiative, which enables Amazon’s suppliers and other eligible signatories to purchase
high-quality removal credits vetted by Amazon’s due diligence.

Through their advance purchase commitments and coalitions, technology companies can
play an important role in catalysing investment in carbon removal technologies.
However, enabling policy frameworks and government support are still paramount for
ensuring credible market development and scale.

5.4 Implications for investment
5.4.1 Data centre investment

Investment is surging in new data centres and the capital-intensive IT equipment used for
training and running Al models. An additional 64 GW of greenfield data centre IT load was
built over the past decade, causing annual investment to grow from around USD 100 billion
in 2015 to over USD 500 billion in 2024. Growth is expected to continue in the Base Case,
albeit at a slower rate, surpassing USD 800 billion per annum before 2030 to accommodate
another doubling of capacity in the next five years. As shown in Figure 5.11, this translates
into USD 4.2 trillion of cumulative investment from 2025 to 2030 in the Base Case, and an
additional USD 480 billion in energy capex.

Data centre investment captures three categories of capital expenditure (capex), namely:
B IT capex: Servers, networking, memory, and storage.

B Non-IT capex: Building shell and other mechanical and electrical installations, such as
cooling, transformers and uninterruptible power supplies.

B Energy capex: New generation capacity, battery storage, and transmission and
distribution to service additional energy demand from data centres.

Non-IT-related capex is highly influenced by location and hence represents a variable
component in total investment. The combined cost of construction and installations ranges
from USD 6 000 per kilowatt of IT load in some emerging market and developing economies
to over USD 10 000 in many advanced economies (Turner & Townsend, 2024).

Higher spending on IT equipment — accelerated servers, in particular — is the key factor
behind the marked acceleration of investment in recent years. With a relatively limited
number of key suppliers, higher server prices are less affected by project location and are
typically 10-30 times more expensive than conventional servers (SemiAnalysis, 2023). Data
on IT equipment costs are rarely disclosed by companies and are highly project-specific, but
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examples such as Amazon’s Mississippi data centre construction project demonstrate how
quickly costs can escalate to accommodate expensive IT configurations: the total capital
expenditure for the project was revised upwards by 60% only a year after its initial
announcement in 2024 (Bloomberg, 2025). Compounding this trend is the relatively short
lifetime of IT equipment. Whereas a transformer will typically last 30 years (IEA, 2023b), IT
equipment can become obsolete four to six years after installation due to rapid technological
progress, especially in frontier Al applications. This is shown in Figure 5.12 where capital
outlay for the replacement of accelerated servers grows over time as the stock of brownfield
data centres grows.

Figure 5.11 > Global annual investment in data centres in the Base Case,
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Source: IEA analysis based on SemiAnalysis (2023 and 2025).

Figure 5.12 also shows how annual accelerated server investment by hyperscalers has grown
from around USD 4 billion in 2015 to nearly USD 100 billion in 2024, with Microsoft, Meta,
Amazon and Apple alone having earmarked over USD 300 billion in capex in 2025, primarily
for the construction of data centres and IT equipment procurement (Financial Times, 2025).
Accelerated server investment has also been rapidly growing for co-location and service
providers.

As shown in Figure 5.13, the largest investments in data centres are in the United States.
Numerous factors contribute to this, including fiscal benefits for construction, proximity to
technology and financial hubs, relatively inexpensive electricity and existing fibre
connectivity. In the Base Case, cumulative data centre investment in the United States
amounts to USD 2.4 trillion by 2030. This is more than 5% of the total fixed capital investment
across this period. In the Lift-Off and Headwinds Cases, data centre investment is
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approximately 30% higher and 36% lower, respectively, than in the Base Case. China, home
to its own set of hyperscalers, such as Alibaba, Baidu, Huawei and Tencent, is expected to be
the next-largest investor in data centres in the Base Case. China sees cumulative data centre
investment of about USD 1.3 trillion in the Base Case to 2030 (just over 2% of China’s total
fixed capital investment in this period). The rest of the world amounts to USD 1 trillion in the
Base Case.

Figure 5.12 > Share of global data centre investment by item in the Base Case,
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The share of total investment attributable to accelerated server capex increases
from 10% in 2015 to 45% in 2030 as greenfield data centre building slows

Notes: IT equipment costs, such as networking, storage, memory and server cooling, are allocated to the server
level. Electrical and cooling includes uninterruptible power supplies; building cooling and heating, ventilation
and air conditioning; transformers and switchgears; power distribution units and other electrical installations,
such as lighting. Other includes backup generators and all other mechanical installations not covered under
electrical. Non-hyperscaler includes co-location and internal data centres. Capex includes both greenfield and
brownfield investment spending.

Source: IEA analysis based on SemiAnalysis (2023 and 2025).

Figure 5.13 also highlights that investment in additional generation capacity and
transmission and distribution lines for data centres is expected to remain marginal relative
to capital expenditure on data centre IT and non-IT equipment. This demonstrates how data
centres are more capital intensive than energy intensive, which keeps their share of total
power system costs low. Moreover, it also shows how capital expenditure specifically to
reduce emissions from electricity consumption, such as through renewables and battery
storage, is comparatively small next to the overall expected cost of a data centre. In total,
the additional energy needs for data centres over the next five years equate to less than 4%
of cumulative power sector investment, barring the United States where — due to the sheer
volume of new IT load — data centres drive more than 15% of total power sector investment,
as shown in Figure 5.14.

224 International Energy Agency | Energy and Al



Figure 5.13 = Cumulative additional investment in data centres and energy for
data centres by case and by region, 2025-2030

United States China Rest of world

e
= W Energy
=
N . 1 Data
O 2 s R RLGIIUINIRIRIRE T O TR T E IR RO
I . centres
o
= m
T — L I— -
<}
S N e
=
'_
8 38 5 8 38 5 8 38 5
C c € ® > C c € ® - C c € ® -
z g o g T Wl o g T @ o g
S I £ 3 5 T 8 = 5 T L =
@ &= © &= © &
[ w [J] w [J] w
T T T

IEA. CCBY 4.0.

In the Base Case, the United States accounts for more than half of
cumulative data centre investment over the next five years

Notes: MER = market exchange rate. For an explanation of the cases used in this report (Base Case, Lift-Off
Case, High Efficiency Case and Headwinds Case), please see Chapter 2, section 2.1.1.

Source: IEA analysis based on SemiAnalysis (2023 and 2025).

Figure 5.14 = Cumulative power sector investment for data centres in selected
regions in the Base Case, 2025-2030
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Investment to service additional data centre electricity demand is a small share
of total power sector investment in every region except the United States

Notes: MER = market exchange rate. Includes investment in utility-scale generation capacity, battery storage,
transmission and distribution.
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5.4.2 Potential for data centres to support electricity investment

In total, technology sector companies were the financiers or acquirers of utility-scale low-
emissions power assets worth at least USD 1.5 billion between 2010 and the second quarter
of 2024, contributing about one-quarter of the total financing for these projects (BNEF,
2025). Although this number is likely to represent an underestimate, it is clear that owning
power assets is not the preferred business model for data centre operators; instead, as
shown in Figure 5.15, these companies more commonly support new clean energy projects
indirectly by acting as an offtaker in corporate power purchase agreements (PPAs). Direct
financing is therefore a small fraction of the total investment in new generation projects tied
to corporate PPAs for data centres, implying that these assets are more commonly financed
by conventional financial intermediaries and project developers.

Figure 5.15 = Renewable power corporate PPAs by region and company type,

2021-2025
Advanced economies EMDE excl. China
30
% ® Data centres

25 Other

20

15

10

5 ..........................................................................

2021 2022 2023 2024 2025 2021 2022 2023 2024 2025

IEA. CCBY 4.0.

The corporate PPA market is dominated by technology companies in advanced
economies but has yet to take off in emerging market and developing economies

Notes: PPA = power purchase agreement; EMDE excl. China = emerging market and developing economies
excluding China; GW = gigawatt. China is not shown as its corporate PPA market is nascent. Values for each
year correspond to the PPA start date, not PPA signing date.

Source: IEA analysis based on BNEF (2025) Renewable Energy Project Database.

Securing long-term and affordable finance is a major obstacle for emerging market and
developing economies, where heightened macroeconomic risks and domestic capital
constraints exacerbate challenges inherent to the cashflow profile of renewables projects.
For example, insights from the IEA’s cost of capital observatory show that the cost of capital
for clean energy projects in these economies is at least twice as high as it is in advanced
economies and China (IEA, 2024b), often making financing prohibitively costly. Corporate
PPAs have the potential to alleviate some of these challenges by providing project developers
and financiers with more predictable cashflows. Although the strike price of corporate PPAs
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is seldom disclosed, there is some evidence that technology companies are willing to pay a
premium for low-emissions electricity (IEA, 2025b), and, as shown in Figure 5.16, most
renewable capacity under PPAs in emerging market and developing economies has a tenure
of at least 16 years and over 80% greater than 10 years. This provides more certainty to
investors, but it can also create new risks for the renewable project developers. For example,
if a renewable project experiences a shortfall in generation, the renewable power generation
company would need to purchase electricity at wholesale prices and pay the difference if it
exceeds the PPA strike price. Hence, PPAs should be carefully designed or bundled into a
portfolio of assets to manage any unexpected shortfalls in electricity generation.

Figure 5.16 > Credit ratings for selected corporate PPAs and tenure of all
corporate PPAs in EMDE
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Data centres may make certain renewable projects more bankable
due to more creditworthy offtakers and long-term contracts

Notes: EMDE = emerging market and developing economies. The left graph represents distinct corporate PPAs
in EMDE where (a) a data centre company is serving as the primary offtaker and (b) the local currency long-
term issuer default rating is available for the electricity distribution company. All credit ratings refer to issuer
default ratings using the latest data available from Fitch Ratings or S&P Global Ratings, converted to the S&P
Global Ratings scale. The bubble size corresponds to the project generation capacity in MW. The right graph
includes all corporate PPAs signed in EMDE irrespective of the offtaker type for PPAs where the tenure is
disclosed.

Sources: IEA analysis based BNEF (2025) Renewable Energy Project Database and Fitch Ratings (2019, 2024a,
and 2024b).

In certain contexts, corporate PPAs can also support market development by reducing
offtaker risk. The credit worthiness of offtakers is a crucial factor for determining the cost of
finance or whether a project receives a final investment decision at all, especially when
borrowing is conducted in a foreign currency — most likely US dollars. Figure 5.16 provides
multiple examples of corporate PPAs signed in Latin America, South Africa and Indonesia,
which all show considerable differences in the credit rating of the corporate offtaker relative

Chapter 5 | Emerging themes on energy and Al 227




to traditional offtakers. For example, as shown in Figure 5.16, over 500 megawatts (MW) of
PPAs saw a 6 (AA vs. BBB) to 12 (AA vs. B) notch difference between the default rating of the
corporate offtaker (a technology company) and that of the local electricity distribution
company. In cases such as these, data centres could attract new sources of private finance
to regions where it is needed, thereby providing a helpful pull from the demand side to
develop nascent markets for mature technologies such as solar and wind.

Nevertheless, data centres are unlikely to fundamentally alter the environment for
renewables investment in most emerging market and developing economies, and supportive
policies will also be required. Figure 5.17 shows that transmission and distribution projects
account for a greater share of energy capital expenditure than new generation capacity. Due
to their size, long payback periods, tariff structures, complicated regulatory environments,
and a lack of investor familiarity, these projects only magnify risks and hence are uniquely
challenging to finance. State-owned enterprises are often the primary sponsors of grid
projects, and development finance institutions have provided an average of 3-7% of annual
finance for transmission and distribution in emerging market and developing economies
other than China since 2015. Data centres might be a catalyst for greater private sector
involvement in grid financing. For example, in the United States, energy utilities are adjusting
tariff structures to include long-term financial commitments from large-load customers, such
as data centres, to help pay for additional infrastructure costs (American Electric Power,
2024). However, the need for additional infrastructure underscores the importance of
creating an enabling environment to deploy timely finance at scale.

Figure 5.17 = Implications of additional data centre load for cumulative power
sector investment for selected cases and regions, 2025-2030
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Most energy investment needs for data cenires are due to grids, not new generation
capacity

Notes: EMDE = emerging market and developing economies. For an explanation of the cases used in this report
(Base Case, Lift-Off Case, High Efficiency Case and Headwinds Case), see Chapter 2, section 2.1.1.

228 International Energy Agency | Energy and Al



5.5 Are digital skills in the energy sector a bottleneck?

In recent years Al systems have advanced rapidly, and while businesses and individuals are
increasingly adopting them, their exact applications and the skills required to harness their
potential remain uncertain. Ensuring that the energy sector has Al-literate workers, whether
within organisations or as external collaborators, will be essential for recognising and
developing potential use cases (see Chapter 3). This section explores how Al skills are being
integrated into the energy sector today, as well as the challenges and barriers the industry
may face in acquiring and developing them.

5.5.1 Demand for Al and digital skills in the energy sector

Demand for Al and digital skills is growing in the energy sector but more slowly than
elsewhere in the economy. The call for digital skills within the energy sector was already high
and on the rise before the significant uptick in attention on Al. Labour market indicators,
such as job postings (a proxy measure for the demand for selected skills), reflect the growing
demand for digital skills in the energy sector. For example, the share of job postings requiring
at least one digital skill in four key energy sectors — batteries, utilities, wind and energy
efficiency — increased on average by 20% between 2018 and 2023 in the United States and
the United Kingdom (Figure 5.18).

Figure 5.18 = Share of job postings requiring at least one digital skill,
United States and United Kingdom, 2018 and 2023
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The demand for digital skills has been growing in recent years in key energy sectors

Notes: EV = electric vehicle. Skills are extracted and categorised from job postings using natural language
processing, identifying mentions of skills from the job descriptions. To identify jobs related to the chosen
technologies (batteries and EVs, utilities, energy efficiency and wind), data were extracted using a combination
of text search in the job title and a filter on the occupational code.

Source: IEA analysis based on Lightcast data (2024).
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While demand for Al and digital skills is increasing in the energy industry, it is not rising as
fast as in other sectors. Analysis of job postings that require Al skills as a percentage of all job
postings in the United States reveals that selected energy sectors have been slower to post
a significant share of jobs requiring Al skills (such as machine learning or natural language
processing) than some sectors such as public administration. One reason for this may be that
energy employers are not yet prioritising Al and digital skills in hiring due to unclear use cases
and applications of Al. This also comes at a time when many parts of the energy sector are
reporting an acute shortage of hard technical skills related to project design, engineering and
operation. This is reflected in a survey conducted by the IEA with over 190 energy companies,
where technical skills were identified as the most important hiring criterion, ranking above
both soft skills and digital skills (IEA, 2024c).

As a result, the prevalence of workers with Al skills in the energy sector ranks lower than in
other parts of the economy. Analysis on the concentration of Al talent, measured from self-
reported skills on LinkedIn, showed that utilities and the oil, gas and mining sectors saw lower
levels of Al skills than other sectors across 43 countries (Figure 5.19). Between 2018 and
2024, the concentration of Al talent in utilities and oil, gas and mining was on average 40%
lower than in education, financial services, professional services, and technology,
information and media.

Figure 5.19 = Al talent concentration by selected country and sector, 2024
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The adoption of Al-specific skills has been slower in certain segments
of the energy sector compared to other industries

Notes: TIM = technology, information and media. A LinkedIn member is considered “Al talent” if they have
explicitly added at least two Al skills to their profile and/or they have been employed in an Al job. Al skills
include, among others, machine learning, artificial intelligence, image processing, neural networks, natural
language processing, predictive modelling and deep learning. “Al talent concentration” is calculated by
dividing the counts of Al talent in a country by the counts of Linkedln members in that respective country
(LinkedIn, 2025).

Source: IEA analysis based on LinkedIn data (2025).
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5.5.2 Barriers to developing Al literacy in energy firms

Unclear use cases and high costs are creating barriers to developing Al literacy in energy
firms. Greater Al literacy within energy firms will be important for developing and identifying
compelling use cases and implementing them appropriately. This is because identifying
valuable Al use cases requires both industry knowledge to recognise operational challenges,
as well as digital expertise to evaluate and implement the right Al solutions — or reject them
if they are unsuitable. At the economy-wide level, European firms cited the lack of expertise
as the main issue holding back the adoption of Al (Eurostat, 2025). In the IEA’s employer
survey, only half of the respondents perceived that candidates are meeting the growing
demand for digital skills. Digital and Al literacy training within firms could accelerate the
uptake of Al in the energy sector, as could integrating similar training into energy-related
curriculums and certifications.

Figure 5.20 = Median entry-level salaries by occupation in technology and
energy companies in the United States and Canda, 2024
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Salary discrepancies between technology and energy companies may hinder
the direct hiring of workers with Al-related skills in the energy sector

Notes: ML and Al = machine learning and artificial intelligence. Technology refers to companies such as
Microsoft, Google, Amazon and Salesforce. Energy refers to energy and automotive companies such as
ExxonMobil, BP, Shell, Toyota and Tesla.

Source: IEA analysis based on Levels.fyi (2025).

However, making a case for attracting and retaining Al specialists within the energy sector is
difficult given that use cases can be opaque, as are the potential economic benefits of
bringing these skills into the sector. Key occupations essential to the development of Al
projects, such as software engineers and machine learning specialists, are often drawn to the
technology sector, where salaries tend to be more competitive. For example, analysis of
four key occupations in the United States and Canada revealed that entry-level salaries are
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on average 30% higher in the technology sector than in energy companies (Figure 5.20).
Some companies may be better positioned than others to access skilled Al specialists — oil
and gas, for instance, offer salaries much more comparable to the technology industry, while
regulated utilities may be at a disadvantage. Consultancy-based models may emerge as one
pathway for a wider range of energy firms to access Al specialists.

Some parts of the energy sector have identified viable use cases and are beginning to
implement Al tools (see Chapter 3). As with any wave of technological improvement, this
may yield changes in the types of skills required of energy workers in the future. Al
integration can affect the workforce in various ways, ranging from job displacement to
upskilling and reskilling. While automation could reduce labour needs and labour costs in
some areas, increased productivity and quality have emerged as the primary expected
benefits based on today’s known Al capability. Most energy companies surveyed by the I[EA
identified increased output and shorter project development cycles as the most significant
outcome of Al (Figure 5.21). In addition, the automation of tasks does not necessarily result
in job losses or redundancies but rather a shift in the nature of work, requiring individuals
and organisations to rethink job roles. This transformation calls for reskilling and upskilling
initiatives to equip workers with new competencies. An inventory of potential Al-related use
cases could be an important input to inform future workforce and skills development
planning exercises carried out by firms, as well as strategic planning for other stakeholders,
including education, government and labour representation.

Figure 5.21 = Energy company views on the greatest long-term benefits
expected from expanded Al use
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Over 190 energy companies identified increased productivity and quality
as the primary expected benefits of Al use based on existing applications

Source: IEA (2024c).
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5.6 Bridging the digital divide: The energy-Al nexus in
emerging market and developing economies

Emerging market and developing economies encompass a wide spectrum of countries — from
those with cutting-edge technology hubs to those with limited basic infrastructure. Many are
still grappling with limited Internet connectivity, prohibitively high data costs and low digital
literacy. While the extent of these issues differs greatly across regions and countries, among
emerging market and developing economies, only around 60% of the population currently
have access to reliable Internet, and households spend on average 10 times more of their
income on fixed broadband than in advanced economies. These constraints pose major
hurdles for Al applications in energy — from remote sensor monitoring to advanced analytics
— where continuous data exchange and reliable Internet access are often prerequisites.

Figure 5.22 > Key economic and ICT-related metrics in advanced economies,
China and other EMDE, 2024
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While emerging market and developing economies make up the majority of the world’s
Internet users, advanced economies dominate the ICT sector and data centres

Notes: EMDE = emerging market and developing economies. GDP = gross domestic product; ICT = information
and communication technology. Value added (ICT) is the difference between the gross output and
intermediate consumption in the ICT sector in US dollars. Further information on the data and economies
included in value added (ICT) can be found at World Bank (2023).

Source: IEA analysis based on World Bank (2023).

Digital and energy infrastructure often reinforce one another. While around two-thirds of
the global population reside in emerging market and developing economies excluding China,
these countries account for less than a third of global electricity generation, underscoring a
lag in energy infrastructure development (Figure 5.22). Digital infrastructure is also lagging,
with advanced economies overwhelmingly dominating the Al supply chain, from ICT value
added in manufacturing and services to installed data centre capacity. Unlocking Al’s
potential in emerging market and developing economies requires careful co-ordination in

Chapter 5 | Emerging themes on energy and Al 233




building up energy and digital capacities. This synergy is particularly pertinent in regions such
as Africa, where large and growing youth populations are spurring demand for digital services
and new job opportunities. With baseline contexts varying immensely between countries,
tailored approaches are needed to harness Al’s potential.

5.6.1 Power reliability as a barrier in emerging market and developing
economies

Data centres are the bedrock of Al services, but many emerging market and developing
economies face electricity supply challenges that complicate local hosting. In regions with
frequent outages (Figure 5.23), maintaining a data centre often demands costly backup
power systems, making overseas hosting or cloud services more appealing for businesses.
While cutting-edge hardware is not always essential — some Al tasks can run on older-
generation chips and IT equipment — dependable electricity is non-negotiable for any data
infrastructure.

Figure 5.23 = End-user power supply interruption indicators by country/region,
2016-2020 average
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Emerging market and developing economies experience significantly higher power supply
interruptions, with some regions facing outages exceeding 700 hours per year

Notes: EMDE = emerging market and developing economies; SAIDI = system average interruption duration
index. Other EMDE excludes high-outage EMDE. High-outage EMDE comprises all countries with more than
100 annual outage hours on average per customer over the 2016-2020 period. EIA data were used for the
United States, and World Bank data were used for all other countries. World Bank data are based on surveys.
US data include interruptions from major events. Given the possible differences in reporting standards and
coverage, the values presented refer to general trends and do not necessarily reflect precise comparisons
between countries.

Sources: IEA analysis based on World Bank (2020) and US EIA (2023).

There is also consideration of the impacts of data centre energy demand on the broader
electricity system. In some Latin American and African countries, for example, a stark
contrast exists between large-scale data centre investments and everyday energy challenges.
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In some such countries, it is not unusual for remote communities to experience severe power
scarcity, even as new data centre investments intensify competition for local energy demand.
This reality underscores the critical need for reliable, locally sourced electricity to bridge the
digital and energy divides in emerging markets.

Emerging market and developing economies that seek to establish domestic data centres —
for Al and otherwise — therefore need to address power reliability and affordability issues.
Scaling up power generation capacity to meet demand from all consumers, and specifically
for data centres, becomes vital. Furthermore, in the context of ambitions stated by
governments in various emerging market and developing economies to scale up renewable
energy projects, technology companies may be able to provide a demand anchor for
renewable power projects. Major technology firms in advanced economies have already
demonstrated how long-term PPAs can catalyse large-scale solar and wind installations.
Similar models could be replicated in middle-income countries, where data centres serve as
anchor customers, stabilising demand for clean energy. Nonetheless, the feasibility of these
partnerships depends on local grid conditions, investment climates and regulatory
environments, all of which differ significantly across these countries.

5.6.2 The role of Al applications in the energy sector in emerging market
and developing economies

Much like in advanced economies, Al applications have the potential to help the energy
sector in emerging market and developing economies achieve a wide range of optimisations.
For example, many of these countries contend with ageing grids and inefficient distribution
networks, leading to high technical losses. Al-enabled tools — such as predictive maintenance
and advanced load forecasting — can help cut these losses, reduce operating costs and
integrate more renewables, which are the lowest-cost generation options for most countries.
The share of renewable electricity generation capacity in such countries is on track to rise to
almost three quarters (55% if excluding China) over the next decade. Even incremental
improvements in grid management can have considerable benefits, particularly in countries
with strained public finances and growing energy demand. In emerging market and
developing economies excluding China, electricity demand is on track to rise faster than in
advanced economies over the next decade, with EV sales set to increase nearly sixfold, the
stock of air conditioners set to grow by more than half a billion units and a surge in the sales
of devices, battery storage and more. As this reshapes load profiles, Al will be essential for
managing complexity, improving supply and demand balancing and supporting demand-side
management.

We explored the impact of the widespread adoption of known Al applications (see Box 3.1 in
Chapter 3 for the methodology) on energy savings as one metric of energy sector
optimisations in emerging market and developing economies. Owing to a range of
challenges, the role of Al applications in achieving energy savings remains lower than activity
levels in the three key end-use sectors of industry, buildings and transport (Figure 5.24).
These challenges include the lack of digitalisation, the lack of competition to bring in new
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technologies and approaches, the lack of ambitious energy efficiency regulation to
incentivise the adoption of new technologies and so on.

Figure 5.24> Share of energy savings from Al applications in the Widespread
Adoption Case, 2035
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Due to a range of barriers, energy savings from the widespread adoption of known Al
applications in the energy sector in EMDE remain lower than activity levels

Note: EMDE = emerging market and developing economies.

Another major challenge is that Al models are often trained on datasets from advanced
economies and designed for applications in those contexts, which may not fully capture the
realities of emerging market and developing economies. Investing in local data collection will
be fundamental to accelerating Al adoption in such economies, bridging the gap with more
advanced markets and ensuring they fully benefit from Al-driven innovation and
development. This mismatch can introduce biases or inaccuracies, limiting the effectiveness
of off-the-shelf Al solutions. Conversely, Al can help fill critical data gaps by leveraging
satellite imagery, remote sensing and local sensor data to map underserved regions and
refine demand projections. These capabilities can be pivotal for countries striving to expand
off-grid solutions or plan new transmission lines more effectively.

More recently built factories, infrastructure and buildings could also enable emerging market
and developing economies to leapfrog older developments by applying Al solutions faster. In
certain cases, it can be easier to equip a new factory or building with sensors and energy
management systems rather than retrofitting much older stock with long lifetimes in
advanced economies. There are already promising use cases: for example, in India, a
multinational IT company introduced an Al-powered building energy management system
(Infosys, 2024), and Dorf Ketal, a chemical company, optimised the furnace run length in a
steam cracker by applying Al (Digital Refining, 2024). In Morocco, Al algorithms have been
used to optimise processes in the paper industry (Batouta, Aouhassi and Mansouri, 2024).
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5.6.3 Overcoming diverse barriers and laying the policy groundwork for
inclusive Al in energy

Despite considerable potential, Al uptake in the energy sectors of emerging market and
developing economies faces a range of hurdles — limited local expertise, high capital costs
and uneven connectivity among them. Some economies have relatively mature ICT sectors
that could readily adopt Al tools, while others require more foundational investments in
power and broadband infrastructure before Al can be deployed at scale.

Survey data on household adoption of generative Al reveals that adoption is globalised —
where the Internet and other supportive infrastructure are available. As a share of the online
population, over 50% of survey respondents report using generative Al at least weekly, even
in many emerging market and developing economies (Figure 5.25). Indeed, it seems that
people in such economies use generative Al more than people in advanced economies — at
least when the survey sample is restricted to people who are already online. However, a
significant share of the population in lower-income countries does not have regular access
to the Internet. When the survey results are adjusted to reflect this, unsurprisingly, usage
rates of ChatGPT fall in lower-income countries. The results suggest that access to generative
Al has become highly globalised only a few years after the release of the first genuinely mass-
market application, being widely adopted across different cultural contexts, subject to access
to enabling infrastructure.

Figure 5.25 = Share of the population reporting at least weekly use of ChatGPT
in selected countries versus GDP per capita
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Generative Al adoption is already highly globalised,
but adoption rates also depend on access to online infrastructure

Note: PPP = purchasing power parity.
Sources: IEA analysis based on GPO-AI (2024) and World Bank (2024a, 2024b).
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As people and businesses in emerging market and developing economies remain open to
adopting the latest available tools in their daily lives and processes, the prospect of
leapfrogging older technologies remains alluring. Just as the mobile phone revolution
bypassed landline expansion, Al-driven applications may enable some of these economies to
sidestep legacy systems and adopt cutting-edge energy management solutions directly.
Governments can encourage this by integrating Al objectives into national energy strategies,
promoting local Al skills development through partnerships with universities, training centres
and research centres, and offering clear incentives for private-sector involvement. Blended
finance mechanisms — combining concessional loans, guarantees and private capital — could
also help mitigate risks for projects aiming to build both digital and energy infrastructure.

Ultimately, each country requires customised solutions that reflect its unique mix of
resources, markets and regulatory contexts. For some, attracting data centres through
reliable green power could be a catalyst for modernisation; for others, the priority might be
smaller-scale digital tools that bolster rural electrification or reduce transmission losses. In
all cases, addressing both energy and digital connectivity gaps together is crucial. By fostering
local data collection, developing talent and creating robust policy frameworks, emerging
market and developing economies can harness Al to drive more inclusive, future-proof
growth — growth that integrates renewable energy expansion, meets rapidly rising demand
and supports new industries in the process.

5.7 The Al and energy policy landscape

The growing role of Al in the global economy in recent years has led to an evolving policy
landscape. As of 2025, most economies have adopted a national Al strategy. Recently
adopted strategies have focused notably on creating frameworks to foster Al development
and use in national economies, including the energy sector. This section looks at national
policy frameworks and their impacts on the Al-energy nexus.

5.7.1 The enabling role of government in Al development

National Al strategies often involve government financial support for the emergence of an Al
industry. As it stands, support generally focuses on three main components: the
development of Al models and use through research and development (R&D) programmes,
direct support for data centre development, and domestic incentives for manufacturing
chips and semiconductors. For example, Japan invested USD 13 billion in 2023 alone to build
the foundations of a semiconductor and Al-related technology sector (Japan, Ministry of
Finance, 2024) part of its pledge to invest JPY 10 trillion (USD 65 billion) by 2030 (The Japan
Times, 2024).

R&D has grown sharply in recent years, with close to USD 7 billion of disbursement from
governments for Al-related R&D projects in 2023, close to three times the amount spent in
2018. This growth can be attributed to three main regions: the United States, the
European Union and China (see Chapter 4). However, future plans indicate a broadening of
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this trend. Brazil recently published its Artificial Intelligence Plan 2024-2028, with a key
objective to boost its R&D in this area by earmarking USD 4.6 billion in the next four years
(Brazil, Ministry of Science, Technology and Innovation, 2024). Egypt also released its Second
National Al Strategy in 2025, with the objective of creating a national Al fund equivalent to
USD 430 million to USD 860 million (Egypt, The National Council for Artificial Intelligence,
2025).

In 2024, India facilitated the creation of three Al Centres of Excellence worth USD 120 million
(India, Ministry of Electronics and IT, 2025) and launched the IndiaAl Mission and its Semicon
India programme, with an initial budget of USD 9.2 billion to accelerate the uptake of Al
infrastructure and necessary components such as microchips (India, Ministry of Electronics
& IT, 2024).

Figure 5.26 = Government R&D for Al-related projects in digital software and
innovation

Million USD

United States China European Union

IEA. CCBY 4.0.

R&D surged in all regions in the past five years,
from USD 2.6 billion in 2018 to more than USD 7.0 billion in 2023

Notes: R&D = research and development. Government R&D includes primary and secondary Al projects.

Sources: IEA analysis based on the respective government websites and Archaya and Arnold (2019), and China
Central Government (n.d.).

Korea’s Restriction of Special Tax Treatment Act incentivises data centre development
through tax credits of up to 12% of facility investment costs for Al and cloud companies
(Ministry of Economy and Finance of Korea, 2023). China also provides significant tax breaks
with its High and New-Technology Enterprise status, which involves reduced corporate
income tax rates from 25% to 15% (The State Council of the People's Republic of China, 2019).
Thailand’s Board of Investment offers substantial long-term tax incentives, up to 13 years of
tax exemption from machinery to raw material import duties (Thailand Board of Investment,
2025).
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5.7.2 Energy and Al policy frameworks

As noted above and in Chapter 2, data centres bring both opportunities and challenges for
the grid. Policy frameworks have started being developed to incentivise data centre
development outside areas of grid congestion (W Media, 2023a). The Korean Government
offers a 50% discount on the electricity facility levy to data centres built outside the Seoul
metropolitan area (W Media, 2023b). Beyond incentives, some jurisdictions impose stricter
rules on data centre expansion, for example through energy performance requirements or a
moratorium in some cases. In 2018, Beijing banned the construction or expansion of data
centres in the city, except for cloud computing data centres with a power usage effectiveness
(PUE) of 1.5 or less (The People's Government of Beijing Municipality, 2018). The Netherlands
and Singapore imposed a moratorium on data centres in 2019 as they were reconsidering
their data centre strategies with the influx of data centres — both moratoriums have since
been lifted (Data Centre Dynamics, 2022; The Straits Times, 2022). In South Africa, the
National Policy on Data and Cloud has designated locations for data centres to reduce stress
on the national grid (Republic of South Africa, 2024). The Electric Reliability Council of Texas
recently enabled a Large Load Revision Request Package requiring certain information about
all loads to ensure a more rational load queue and encourage flexibility (The National Law
Review, 2025).

Several countries have mandated minimum energy performance standards. These
performance standards specifically focus on the PUE, or the ratio between the power
consumption of the whole facility against the consumption of the IT equipment. The National
Australian Built Environment Rating System, in place since January 2025, is the first and only
mandatory labelling programme for data centres, ranging between a PUE of 1.07 (6 stars —
market leading) to 2.42 (1 star — making a start). Requirements can be downscaled to IT-
specific equipment like data storage, network equipment and servers (NABERS, 2024). The
2019 EU regulation on ecodesign requirements for servers and data storage products
imposes both power efficiency requirements (gradually increasing between March 2020 and
January 2023) and material efficiency requirements for data storage devices, memory and
processors. Germany expanded the scope of the energy reuse factor, which only accounts
for reused heat and energy, requiring facilities to reach 10% in 2026 and 15% by 2028
(Germany, Federal Ministry for Economic Affairs and Climate Action, 2023).

Table 5.1 > Data centre energy efficiency mandates for selected economies

Region PUE (2023) PUE mandate

Australia 1.44 1.4 by 2025

China 1.56 1.5 by 2025

France 1.36 40% building energy use reduction by 2030
Germany 1.42 1.2 by 2026 (new), 1.3 by 2030 (existing)
Japan 1.53 1.4 by 2022

California (United States) 1.21 1.5 by 2014

Global 1.43 -

Note: PUE = power usage effectiveness.

Sources: Based on government websites and Masanet (2024).
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Table 5.2 > Policy landscape in selected economies

Government Performance

. ) Reporting requirements
National financial support mandates

Economy S

DEIE] Electricity

R&D Chips Emissions PUE WUE

centres consumption

Argentina
Australia

Brazil

Canada

China

European Union
France
Germany

India

Indonesia

Italy

Japan

Korea

Mexico

Russian Federation
Saudi Arabia
South Africa
Tirkiye

United Kingdom
United States

Notes: (U = subnational only; PUE = power usage effectiveness; WUE = water usage effectiveness.

Reporting requirements for data centres are on a voluntary basis in most jurisdictions as of
2025, but some mandatory schemes are being developed (see Table 5.1 and 5.2). The EU
Corporate Sustainability Reporting Directive notably entered into force in 2023 and requires
direct and indirect greenhouse gas emissions reporting from large and listed companies, that
is, including emissions from electricity consumption or data provider subsidiaries. The Energy
Efficiency Directive sets annual reporting obligations across 31 metrics for data centre
owners and operators, and the implementation of certified energy management systems,
such as 1SO 50001, for large energy users, replacing the previous four-year audit
requirement. The Delegated Regulation 2024/1364 set reporting requirements for data
centres specifically on PUE and a water usage effectiveness (WUE) metric (Box 5.4 contains
a discussion on water use by data centres). Singapore reformed its Green Data Centre
Standard in 2020 to meet the I1SO 50001 standard for energy management. Canada’s Energy
Star voluntary programme provides its own certificate for each piece of data centre
equipment, including data storage, large network equipment, servers and uninterruptible
power supplies.
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Hardware efficiency is key, yet software efficiency is discussed only in a handful of countries.
Mitigating the rise in data centre energy demand could focus on fostering the efficiency of
Al services themselves. This can take various forms, from smaller models requiring fewer
parameters to optimised Al model training. In June 2024, France published benchmarks for
measuring and reducing the environmental impact of Al, with 26 recommendations and best
practices for the conception and development of Al models.

Box 5.4 > Water use by data centres: How thirsty is Al?

Data centres require large amounts of water — both directly for cooling onsite as well as
indirectly for water consumption associated with semiconductor manufacturing and
energy supply. Water use varies significantly by data centre, depending on the cooling
technology, the local climate and the source of electricity supply. For example, direct
expansion cooling (which accounts for around four-fifths of cooling in enterprise data
centres) is many times less water intensive than airside economiser and adiabatic cooling
with water-cooled chillers (used in about half of hyperscale data centres).? Based on
estimates of the current breakdown of cooling technologies, we estimate that on average
a 100 MW hyperscale data centre in the United States consumes around 2 million litres
per day in total — equivalent to about 6500 households — with over 60% of this being
indirect water use.

We estimate that global water consumption for data centres is currently around
560 billion litres per year, and this could rise to around 1200 billion litres per year in 2030
in the Base Case (Figure 5.27). Global water withdrawals? for data centres show a similar
steep increase to 2030. About two-thirds of the consumption in 2023 was associated with
primary energy supply and electricity generation, a further one-quarter with direct
cooling and the remainder for water used in semiconductor and microchip
manufacturing.

A number of factors determine overall water intensity, and this changes the relative
water demands associated with direct and indirect operations over time. For energy
supply, water withdrawals depend heavily on the mix of technologies used for electricity
generation, with solar PV and wind using one-hundredth of the water that fossil sources
use, or less (IEA, 2016). This means that the water use associated with energy supply is
growing more slowly than data centre electricity demand, as more electricity is being
generated from renewable sources. Conversely, at the manufacturing stage, almost 90%
of water consumption is associated with ultra-pure water production, needed to produce

2 In direct expansion cooling, refrigerant circulates directly through indoor coils to cool the data centre air. In
airside economiser and adiabatic cooling with water-cooled chiller cooling, water evaporates directly to
provide cooling supplemented by water-cooled chiller systems, which use cool water drawn from natural
resources or produced by cooling towers.

3 Withdrawals are the total amount of water withdrawn from sources including surface water and
groundwater. Consumption represents the portion of withdrawals not returned to the original water source
after use but lost, e.g. through evaporation.
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microchips from semiconductors. In the Base Case, water consumption from chip
manufacturing for data centres grows more than 50% from 2023 levels to around
70 billion litres in 2030 — faster than new servers are added to data centres — driven by
an increasing number of accelerated servers, which tend to contain more chips than
conventional servers.*

Figure 5.27 = Water withdrawals and consumption by data centres in the
Base Case, 2023 and 2030

Withdrawals Consumption
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Water consumption more than doubles between 2023 and 2030

Notes: Assumes a fixed water use per area of wafer area between 2023 and 2030. Assumes direct WUE
by cooling technologies equivalent to 2023. Water requirements are quantified for “source-to-carrier”
primary energy production (oil, gas, coal and hydrogen), a definition which includes production,
processing and transport. Water withdrawals and consumption for bioenergy account for water use for
processing. For electricity generation, freshwater requirements are for the operational phase, including
cleaning, cooling and other process-related needs. Electricity generation includes fossil fuels, nuclear,
modern bioenergy and renewables waste, solar PV, concentrating solar power, wind and geothermal.

Sources: IEA modelling and analysis based on Harris, et al. (2019), Hamed et al. (2022), IEA (2016), Lei, et
al. (2025), Lei and Masanet (2022), and Shehabi, et al. (2024).

In some countries, such as the United States, withdrawals for data centres today equate
to less than 10% of annual municipal water withdrawals, but elsewhere, the water
demands of data centres could compete with water for agricultural irrigation and
municipal uses and even impact the supply chains that underpin microchip
manufacturing. In Chinese Taipei, for example, semiconductor manufacturers were
subject to water restrictions during a drought in 2021, requiring water use reduction
strategies to be implemented. Around half of the consumption by 2030 is in Asia Pacific

4 While recycling efforts and water efficiency measures could reduce water use, there is also evidence that
advanced chip manufacturing has higher than average water intensity, and large chip manufacturers have
reported increased water use per wafer since 2020.
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countries, where a typically warm and humid climate makes cooling more water
intensive. For instance, Microsoft estimated that the water use effectiveness (WUE)® for
direct cooling in Asia Pacific was 1.65 litres per kilowatt hour (kWh) — more than
three times the global average of its data centres of around 0.5 litres per kWh (Microsoft,
2022). In Europe, the Climate Neutral Data Centre Pact, signed by 97 operators and
associations, targets a reduction in WUE to less than 0.4 litres per kWh by 2040 (Climate
Neutral Data Center, 2023).

The number of people exposed to water stress is set to increase by at least 50% by 2050
with climate change (Munia, et al., 2020). Siting new data centres in areas of low water
stress is a straightforward way to ensure sustainability ambitions are met, but innovation
could also help quench the water needs of data centres and ensure that data centres are
not adding to water stress risks in a warming climate. For example, direct liquid cooling
(where liquid coolants circulate directly through servers with a coupling to a heat
exchanger) and immersion cooling (where servers are submerged in a non-conducting
dielectric fluid) can reduce direct water consumption significantly (Kong, et al., 2024).
Operators including AWS and Google have pledged to be “water positive” by 2030, by
combining recycling and replenishment programs with reductions in the direct WUE of
their operations. (Google, 2024; Amazon, 2023).

Semiconductor manufacturing facilities are also making headway. By adjusting the design
of rinse tanks, ultra-pure water use can be reduced and, increasingly, manufacturers are
installing onsite water recycling technologies. Al can also play a role in improving WUE
by dynamically adjusting cooling requirements based on real-time data and predictive
algorithms. Al has applications in desalination technologies (see Chapter 4), which could
help expand the supply of usable water for cooling in coastal regions. Al could also help
address water stress risks in the economy as a whole via improved resource
management, such as predictive analytics for leak detection, smart irrigation and the
optimisation of water infrastructure.

5.8 An exploratory approach to determine the potential
impact of Al on emissions

The world is on track to witness a global temperature rise of 2.4 °C by 2100 under a trajectory
determined by prevailing policy settings as of October 2024. This is substantially higher than
the Paris Agreement goal to pursue efforts to limit the global temperature rise to 1.5 °C

5 WUE is the ratio of total direct water use to IT electricity consumption. The 2024 United States Data Center
Energy Usage Report estimates an average WUE value of 0.36 litres per kWh in the United States for 2023;
several data centre operators have reported significantly higher values in the range of 1-1.5 litres per kWh for
their global operations (Shehabi, et al., 2024; Equinix, 2023; Google, 2024). Disclosure of WUE in company
reports is less common than for similar sustainability metrics relating to energy use or greenhouse gas
emissions, increasing the uncertainty in current and projected water use by the industry as a whole.
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above pre-industrial levels. The emergence of Al has both raised concerns that Al-fuelled
data centre growth might fuel climate change and also raised expectations that Al
applications in the energy sector could help reduce emissions by unlocking new
optimisations and efficiencies. As over 100 countries — and the European Union — have
targets to reach net zero emissions between 2030 and 2070, it is pertinent to explore what
Al’s impact on emissions could potentially be.

The net impact of Al on emissions is dependent on three broad factors: first, the rise in
emissions from fossil fuel use associated with growth in Al training and use; second,
emissions reductions brought about by efficiencies and innovations that Al brings to the
energy system and the economy at large (discussed at length in Chapter 3); and third,
increased emissions from the rebound effects of Al use through inducing new consumption,
such as from cost reductions in oil and gas, or inducing a modal shift away from public
transport to autonomous vehicles.

An analysis of these three factors, however, is characterised by several uncertainties and
unknowns. These include a lack of credible indicators that can help determine the uptake of
existing Al applications, the unknown nature of Al applications that might arise even in the
near future and uncertainty about how the rebound effects might play out. In addition, there
is a lack of both consistency in methodologies and comprehensive data, the result of which
is wide variances, even in historic estimates of emissions from the ICT sector (Bremer, et al.,
2023).

For these reasons, this publication adopts an exploratory approach to estimating the impact
of Al on emissions. This approach consists of the following parts:

B We estimate and contextualise the current and future emissions from all data centres,
including all workloads, as Al is an unknown subset within it.

B Next, we estimate the future emissions reductions arising from the efficiencies and
optimisations resulting from existing Al applications — if their adoption were to be scaled
up to the sectoral level.

®  Finally, we explore the nature of rebound effects, although we do not estimate the
upper bounds of the effects due to their uncertain nature.

Our analysis finds, first, that while data centres (all workloads, including Al) are among the
largest sources of growth in emissions, the emissions peak and decline after 2030 and remain
at nearly 1% of aggregate energy sector emissions between 2030 and 2035 in the Base Case.
Second, while the potential emissions reductions through the widespread adoption of Al are
significantly larger than the emissions from data centres, these potential emissions
reductions remain at around 4% of total energy sector emissions in 2035. There is currently
no existing momentum of Al adoption that would unlock these emissions reductions to this
degree. Third, the magnitude of emissions increases from rebound effects (including higher
fossil fuel consumption from the Al-enabled cost reductions) remains uncertain. These
impacts therefore become a key determinant of where Al stands in balance on emissions.
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5.8.1 Contextualising emissions growth from data centres

Global fuel combustion CO, emissions are estimated to reach 35 000 million tonnes (Mt) in
2024. Data centres account for around 180 Mt of indirect CO, emissions today from the
consumption of electricity, not including any emissions from backup power generation. This
includes all workloads by data centres, of which Al is a subset. Data centres therefore account
for a small share of emissions: 0.5% of combustion emissions today (Figure 5.28). Indirect
emissions from data centres grow by almost 80% over the course of the decade, rising to 1%
in the Base Case. They grow 2.5 times to reach 1.4% of combustion emissions in the Lift-Off
Case.

Figure 5.28 > Indirect data centres CO2 emissions and CO2 emissions growth
by sector (not considering Al impacts), 2024-2030

Indirect data centres CO, emissions Growth in CO, emissions, 2024-2030
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Data centres are on track to be responsible for 3% of electricity generation and 1% of total
combustion emissions by 2030; they are among the few sectors that show growth to 2030

Notes: Gt = gigatonne; Mt = million tonnes. Base = Base Case, Lift-Off = Lift-Off Case. For an explanation of the
cases used in this report, please see Chapter 2, section 2.1.1. Future CO; emissions are based on a scenario
guided by today’s policy settings; the impacts of Al-led optimisations in the Widespread Adoption Case are
not factored in. CO2 emissions growth includes emissions from fuel combustion and indirect emissions from
electricity and heat consumption, but exclude process emissions.

Owing to the variances in the electricity generation mix, there is an expected variance in
emissions from data centres by region. In the United States, for example, data centre
emissions grow by 70% over the next decade in the Base Case, reaching 3.3% of national
combustion CO, emissions. In the Lift-Off Case, US data centre emissions are 4.5% of
combustion emissions by 2035. In China, emissions grow rapidly, reaching more than 3% of
combustion emissions in the Lift-Off Case, while in the European Union, they remain under
0.5% of combustion emissions, even in the Lift-Off Case.
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While the share of data centres in aggregate emissions may appear small, data centres are
among the few sectors — along with road transport and aviation — that see an increase in
their direct and indirect emissions to 2030. In the Lift-Off Case (discussed in Chapter 2,
section 2.3.2), data centres see the largest emissions growth among all sectors.

However, there is a use case that could help data centres reduce emissions in the broader
energy system in some regions, notably in parts of Europe and China. Data centres can also
provide waste heat as an input to district heating, helping decarbonise the sector to some
degree (Box 5.5).

Box 5.5 > Data centre heat reuse to help decarbonise district heating

Effectively all the electricity consumed by a data centre’s IT equipment is converted into
heat. As the data centre market has grown to meet the increasing demand for
computation, so has the opportunity to recover and reuse this heat.

For the most part, the technology needed for data centres to recover their excess heat
and transport it to offtakers is well established, and the adoption of new technologies —
such as liquid cooling — provides an opportunity to increase the amount of heat
recovered. Specific configurations vary depending on the cooling system employed, but
all essentially involve using a heat exchanger to heat a working fluid, increasing the
temperature using a heat pump if necessary and then piping it to an offtaker, such as a
district heat network or nearby industrial facility. Air-cooled systems often require a heat
pump to upgrade the heat to a usable temperature, but liquid cooling systems can
provide higher-temperature heat — from 40 °C to 80 °C — which can directly supply
existing district heating networks.

Process engineering firms have demonstrated the ability to capture waste heat from data
centres and supply district heating networks at EUR 190 000 to EUR 250 000 per MW of
heat supplied, versus over EUR 730 000 per MW for an unabated natural gas combined
heat and power plant. However, for data centre operators, the incentives for
implementing heat recovery are not entirely financial. Often, they deploy these systems
toimprove PUE and secure a social licence to operate from the surrounding communities.
There is growing interest among governments in increasing the use of heat recovery. In
several countries —such as Germany and the Netherlands — it is now mandated that new
data centres integrate heat recovery, and the European Union’s latest Energy Efficiency
Directive requires data centres with a total energy consumption over 1 MW utilize waste
heat recovery or show that such recovery is technically or economically unfeasible
(Uptime Institute, 2023).

While the technology to recover heat from data centres already exists, there are notable
obstacles to overcome. These include the operational challenges of incorporating
decentralised generation into legacy district heating networks, the need for clear
business models that delineate responsibilities for installing and maintaining
infrastructure, establishing firm offtake agreements with clear tariff structures, and
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aligning data centre and district heating construction schedules. Nevertheless, several
initiatives have proven the viability of coupling data centre heat recovery with district
heating systems. Notably, Stockholm Data Parks — a joint venture led by the City of
Stockholm, district heating utility Stockholm Exergi, power grid operator Ellevio and dark
fibre provider Stokab — has connected over 20 data centres to the network, meeting 1.5%
of system demand and reducing emissions by 50 grammes of CO, per kWh of heat
supplied (Covenant of Mayors, 2023).

Figure 5.29 = Proximity of buildings space heating demand to data centres,
and potential data centre heat supply in Europe, 2030
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Reused heat from data cenires can meet about 300 TWh of heating demand within a
few kilometres by 2030, equivalent to 10% of European space heating needs

Notes: TWh = terawatt hour. The data centre heat supply range is estimated based on possible heat
recovery rates and the coefficient of performance of the heat pumps.

Even in a strong heat coupling scenario, data centres would only be able to meet a
fraction of residential heat demand. In Europe — a region with well-developed heat
networks — space heating demand is over 9 times larger than the total waste heat of the
world’s data centres. Nonetheless, IEA geospatial analysis of heat demand and data
centre locations indicates that heat coupling could make a small but meaningful
contribution to decarbonising buildings space heating in Europe. Around 10% of Europe’s
buildings space heat demand is located within 5 kilometres of a data centre that is within
a district heating system’s service area, which could offset nearly 5Mt of CO, if
connected. While the largest data centres are unlikely to be sited near existing district
heating networks and would require the installation of new, long-distance piping,
opportunities exist to collocate other industrial offtakers nearby, especially in the case of
new builds.
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5.8.2 The role of Al in reducing emissions from energy use

Al applications in the energy sector are being used for a wide range of optimisations, as
explored in Chapter 3. Some of these applications lead to emissions reductions, whether
directly through reduced energy needs or otherwise. They cut across fuel and mineral supply,
power generation and energy end-use in buildings, transport and industry. Examples include:

B Methane emissions reductions in oil and gas operations — a large source of this sector’s
methane emissions come from leaks; Al can facilitate detection so that repairs can
happen sooner, for example through better identification using satellite monitoring
systems.

B Power sector emissions reductions by improving efficiencies at fossil fuel-powered
plants; for example, by ensuring process conditions within a natural gas-powered plant
are closer to those for optimal efficiency.

B Industry emissions reductions by optimising manufacturing processes for their energy
needs, therefore lowering related emissions; for example, improving the fuel mix for
cement production can improve energy efficiency by more than 2%.

B Transport emissions reductions through more efficient vehicle operations and
utilisation; for example, improved route choice or driving characteristics lead to
efficiency gains of 5-10% and hence reduce emissions.

®  Buildings emissions reductions by optimising energy consumption in buildings
equipped with management systems; for example, an optimised heating, ventilation
and air conditioning control can save around 10% in energy consumption.

Such examples highlight Al’s potential to lower emissions, although they are quite marginal
in their aggregate impact today. Al’s impact on emissions depends on its uptake, driven by
several factors: affordability and compelling use cases, a supportive regulatory environment,
necessary digital infrastructure and the emergence of future Al capabilities, among others.
The outlook for these factors, however, is highly uncertain.

Therefore, we have conducted sectoral analyses that explore the extent of change in the
outlook in the coming decade, considering only known Al applications informed by real-world
case studies to guide our modelling. In this analysis, we consider the impact of the
widespread adoption of Al on end-use sectors, taking into account the impacts that known
Al applications could have if they were implemented or rolled out at the sectoral level. This
is captured in the Widespread Adoption Case, introduced and discussed in Chapter 3,
Box 3.1.

This exploratory analysis reveals that existing Al applications in end-use sectors could lead to
1.4 gigatonnes of CO, emissions reductions in 2035 in the Widespread Adoption Case. This
does not include any breakthrough discoveries that may emerge thanks to Al in the next
decade. These potential emissions reductions, if realised, would be three times larger than
the total data centre emissions in the Lift-Off Case, and nearly five times larger than those in
the Base Case. For emissions reductions from Al to match the total emissions from data
centres in the Base Case, these existing Al applications would need to be scaled up to around
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a third of energy-intensive industries, a quarter of high-tech industries and 15% of other light
industries. Rebound effects, however, are uncertain and can change the equation, as
discussed in the next section.

It is vital to note that there is currently no momentum that could ensure the widespread
adoption of these Al applications. Therefore, their aggregate impact, even in 2035, could be
marginal if the necessary enabling conditions are not created. Barriers include constraints on
access to data, the absence of digital infrastructure and skills, regulatory and security
restrictions, and social or cultural obstacles. Nonetheless, this analysis provides a flavour of
the potential.

Figure 5.30 > Direct and indirect emissions reductions in end-use sectors in the
Widespread Adoption Case and emissions reductions
contextualised with total emissions
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Industry and transport have the largest potential for emissions reductions by 2035 under the
Widespread Adoption Case; however, emissions reductions remain at around 4% of the total

In the Widespread Adoption Case, one-third of the Al-enabled CO, emissions reduction
potential in the industrial sector comes from direct emissions — mainly in energy-intensive
industries in which high digitalisation rates enable high deployment rates, and incremental
savings in the range of 2-6% can be reached. The remaining two-thirds are indirect emissions
savings through reduced electricity demand, mainly in light industry, where savings strongly
depend on the digitalisation of plants. The assumed deployment varies between high
deployment in high-technology subsectors such as transport equipment and machinery,
which can reach savings in the double-digit percentage range, and other subsectors, such as
wood products or mining, in which lower deployment and savings are assumed.

In transport, road transport accounts for around two-thirds of the total emissions savings.
About half of these savings result from the optimisation of road freight transport fleets, with
deployment rates varying by country (50-70%). The other half comes from cars and buses,
including autonomous driving. The impact of autonomous vehicles is constrained due to the
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limited possibility of retrofitting existing fleets, primarily involving new vehicles. Al-based
operational optimisation of routes in aviation, shipping and rail contributes to the remaining
one-third of emissions savings. Since these modes are already heavily digitalised and require
relatively low retrofitting costs compared to fuel savings, higher deployment rates are
assumed.

In buildings, improvements in building management systems — mainly optimising the use of
heating, ventilation and air conditioning but also other end-uses —lead to the most important
savings from Al impacting electricity demand. As these savings strongly depend on the
digitalisation of buildings, savings from services are higher given their higher deployment
rates than the residential sector, where the installation of sensors and management systems
is assumed to be much lower. In particular, the role of Al remains limited in emerging market
and developing economies due to constraints on digitalisation over the coming decade, as
significant buildings infrastructure continues to remain out of the realm of connectivity.

5.8.3 The uncertain impacts of rebound effects from Al

Applications of Al in various sectors of the economy seek to make outcomes more efficient,
cheaper, less emissions-intense and optimised in other ways. However, such outcomes could
trigger behavioural and structural changes that could lead to increased activity adoption,
usage and workloads. In turn, this can negate the energy savings and emissions reductions
from the Al applications achieved in the first place (Luccioni, Strubell and Crawford, 2025).
Such outcomes — when efficiency gains lead to an increase in consumption, reducing but not
completely negating the expected savings — are known as “rebound effects”. A more direct
form of the rebound effect is known as the Jevons paradox. This is when increased
consumption fully offsets, or even surpasses, the expected savings from improvements in
efficiency.

Such rebound effects could take several forms; for example, cheaper oil and gas could
directly induce greater demand and, therefore, higher emissions; the rise of autonomous
vehicle use could trigger modal shifts away from public transport use; cheaper inference of
generative Al models could lead to significantly higher use in daily life; and the proliferation
of robots could similarly drive energy demand higher.

Take the case of the potential reduction in oil prices. Under prevailing conditions, a USD 10
per barrel decrease in crude oil prices leads to a decline in oil product prices by 2-11%,
depending on the region. The price elasticity of transport fuels, such as gasoline and diesel,
ranges from -0.1 to -0.3, with lower elasticity in regions like the United States and higher
elasticity in Europe (Centre for Transport Studies, 2015). Additionally, there is a distinction
between gasoline and diesel: gasoline tends to be more elastic, as it is primarily used by
consumers, whereas diesel has lower elasticity due to its role in freight transport
(FridstremLasse and @stli Vegard, 2021). Similarly, in the case of kerosene, consumers are
more price sensitive when it comes to leisure travel but less reactive when traveling for work-
related purposes (Mumbower, Garrow and Higg, 2014). Our estimates show that a fall of
USD 10 in a barrel of crude oil could result in increased fuel consumption, leading to a rise in
global CO, emissions equivalent to the emissions from 20 million cars. Note that this assumed
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reduction in oil prices is illustrative, and not a result from our analysis on the widespread
adoption of Al in oil extraction and supply.

In the case of autonomous vehicles, through optimised fuel consumption from eco-driving
algorithms, reduced idling and smarter routing, vehicle fuel consumption could be cut by
over 20% compared to conventional cars. However, with falling costs and increased
availability, autonomous vehicles might become the preferred mode of travel in some cities,
even attracting people away from public transport (Fagnant and Kockelman, 2014). Studies
estimate that the increased adoption of autonomous vehicles leads to the rise of the total
distance travelled by cars, which in turn has implications for emissions — depending on,
among other factors, the share of electric vehicles in the stock of cars and low-emissions
sources in the electricity generation mix.

These are two of a large set of direct and indirect rebound effects that could arise as a result
of the proliferation of Al. The upper bound of the rise in emissions from such rebound effects
therefore remains uncertain. In our analysis, we consider both low and high rebound effects,
which have materially different outcomes on the net impact of Al on emissions. While the
Widespread Adoption Case in end-use sectors is associated with emissions reductions that
are far in excess of emissions from data centres, it is worth repeating that these emissions
reductions are not on track to materialise without regulatory and other interventions.
Furthermore, the presence of rebound effects might negate some of the emissions
reductions from these Al interventions.

The net impact of Al on emissions — and therefore climate change — would depend on how
Al applications are rolled out, what incentives and business cases arise, and how regulatory
frameworks respond to the evolving Al landscape.

Figure 5.31 > Indirect emissions from data centres in selected cases and an
exploratory analysis of Al impacts on emissions, 2035

Estimated impact of Al adoption
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While the widespread adoption of Al leads to emissions savings in excess of data centre
emissions, such Al adoption is not guaranteed and could be negated by rebound effects
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Methodology and data tables

Methodology for data centre energy demand

The modelling of data centre electricity demand relies on a bottom-up approach developed
by the Lawrence Berkeley National Laboratory over the past two decades. In this modelling
approach, IT equipment shipments are the key driver of data centre electricity demand. We
analyse three types of IT equipment: servers, storage systems, and network equipment?. The
last category refers to network equipment hosted within data centre facilities to connect
servers and storage devices to the data network. It should not be confused with the data
transmission network, which connects data centres and end-users (for example, 5G network
towers). The latter falls outside the scope of the modelling of data centre electricity
consumption in this study.

The central input to the model is the annual shipment of servers. These come from:

®  IDC's (International Data Corporation), which provides shipment projections for the
period 2019-2028 (IDC, 2024)

®  These are triangulated with additional data inputs from Omdia (OMDIA, 2025),
SemiAnalysis (SemiAnalysis, 2025), and Borderstep Institute (Hintemann, Hinterholtzer,
and Konrat, 2024), and additional literature (Koomey, 2007), (Koomey, 2011), (Shehabi,
et al., 2024), (Shehabi, 2018), (Shehabi, et al., 2016), (Gartner, 2014a, 2014b, 2014c,
2015a, 2015b, 2015c¢, 2015d, 2016a, 2016b, 20173, 2017b, 2017c, 2018a, 2018b, 2020),
(Masanet, et al., 2020), (Malmodin, et al., 2024).

The stock of storage drives is derived from hard-disk drive shipment data from Forbes
(Forbes, 2021) and the split between HDDs and solid-state drives from (SSDs) (Shehabi, et
al., 2024). The stock of network equipment is estimated based on server port density.

We distinguish three types of data centres, which serve as archetypes in this model:
enterprise data centres, colocation and service provider data centres, and hyperscale data
centres.

The technical characteristics of the server stock, such as lifetime and power consumption, as
well as operational characteristics like idle power ratio and utilisation rates, are based on
estimates from the United States (Shehabi, et al., 2024). Similarly, for storage drives, the split
between storage technologies and average utilisation rates is also based on US estimates.
The characteristics of storage drives are assumed to be constant across all data centre types.
The network port distribution is also assumed to be constant, with one exception: specific
InfinityBand-like network equipment, whose stock depends solely on accelerated servers.

Based on these datasets and input assumptions, we estimate the installed capacity for each
type of IT equipment. It is important to note that these values differ from the maximum

1 See definitions in section 2.1.
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designed capacity, as they consider only the installed units of each IT equipment type and do
not reflect total rack capacity.

The regional allocation of global installed IT capacities relies on several factors. The primary
driver is the regional breakdown provided by our third-party data provider (IDC), which is
based on market dynamics in each region. To achieve finer regional granularity, we also
consider the level of digitalisation of economies based on the digital adoption index (World
Bank, 2016) and the development of the local data centre market, using publicly available
data on data centre market revenues (Statista, 2024), (Turner&Townsend, 2024).

Network equipment is assumed to have a 100% utilisation rate. Storage systems utilisation
rates are considered constant. Idle power assumptions are based on trends observed in the
SERT database for conventional servers and estimates from the literature for accelerated
servers (SPEC, 2024), (Shehabi, et al., 2024).

Aggregation of utilisation rates is conducted by data centre type. The equation for the
electricity consumption of servers is as follows:

E = (Pnax — Piate) * © + Pigie
Where:

B P,.. is the maximum power draw of an operating server (distinct from the maximum
rated power, especially for accelerated servers).

B Py is the power drawn by a server when not processing useful tasks.

B uisthe server utilisation rate.

For each region and data centre type, IT electricity demand is multiplied by the
corresponding Power Usage Effectiveness (PUE) to obtain the total electricity demand of the
infrastructure and hosted IT equipment.

PUE primarily accounts for cooling equipment, power supply equipment, and lighting. Power
supply equipment and lighting are collectively referred to as “auxiliary equipment”. Data
centre type influences PUE due to variations in infrastructure efficiency, climate also affects
PUE by directly impacting cooling requirements. PUE estimates are based on regional climate
and data centre type (enterprise, colocation and service provider, and hyperscale) (Lei and
Masanet, 2022). We assume that regional differences within the same data centre category
arise from variations in cooling needs. The relative evolution of PUE over time is informed by
improvements reported in company-level data (Google, 2025).

The simplified equation for data centre electricity demand in each region is as follows:

Edata centre — E (Eserver,i + Estorage,i + Enetwork,i) * PUEi

i =data centre type
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Data tables

General note to the tables
This annex includes the following datasets:
® Table A.1 - World Data centres by case: Includes global historical and projected data by

case and data centre type (hyperscale, colocation and service provider and enterprise)
for the following metrics:

B Total and IT installed capacity (GW)
B Power usage effectiveness
B Load factor (%)

®  Total and IT electricity consumption (TWh)

E Table A.2 - Data centres installed capacity by region: Includes regional historical and
projected total and IT installed capacity (GW) for the Base Case

m  Table A.3: Data centres power usage effectiveness and load factor by region
®  Table A.4: Data centres electricity consumption by region

Tables A.2 A.3 and A.4 include data for these regions: world, North America, United States,
Central and South America, Europe, Africa, Middle East, Asia Pacific and China. The
definitions for regions are in Annex B.

Both in the text of this report and in these annex tables, rounding may lead to minor
differences between totals and the sum of their individual components.

Annex A licencing

Subject to the IEA Notice for CC-licensed Content, this Annex A to this report is licensed under
a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International Licence.

[ose)
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Table A.1: World data centres by case

Base Lift-Off High Efficiency Headwinds

2023 2024 2030 2035* 2030 2035* 2030 2035* 2030 2035*

Installed capacity (GW)

Total 60 83 97 226 277 305 404 185 221 158 160
Hyperscale 20 31 36 85 103 108 139 89 103 62 64
Colocation and service provider 19 27 35 86 116 118 172 93 115 59 66
Enterprise 20 25 27 55 58 78 93 3 3 36 31

IT 38 57 68 174 228 233 330 153 196 122 132
Hyperscale 17 27 31 77 94 98 127 81 95 56 58
Colocation and service provider 11 17 23 65 96 89 142 70 100 44 54
Enterprise 10 13 14 32 38 46 61 2 2 21 20

Power usage effectiveness

Total 153 143 141 129 121 1.30 122 121 113 128 1.20
Hyperscale 1.19 1.15 1.14 1.10 1.09 1.10 1.09 1.10 1.09 1.10 1.09
Colocation and service provider  1.67 1.56 1.53 133 121 133 121 1.32 115 133 121
Enterprise 2.05 1.95 1.92 171 154 1.72 154 1.67 1.46 1.71 153

Load factor (%)

Total 51 49 49 48 49 47 49 49 50 48 50
Hyperscale 56 54 53 51 52 50 51 51 52 51 53
Colocation and service provider 50 48 48 47 48 47 48 47 49 48 50
Enterprise 48 46 45 45 46 44 46 45 47 45 48

Electricity consumption (TWh)

Total 269 361 416 946 1193 1264 1719 792 972 669 707
Hyperscale 100 148 166 378 466 479 626 397 472 279 293
Colocation and service provider 85 112 144 355 493 482 721 385 490 246 285
Enterprise 85 100 106 213 234 303 372 10 10 144 128

IT 176 252 295 733 985 972 1409 657 864 522 587
Hyperscale 84 129 146 342 427 434 574 360 432 253 269
Colocation and service provider 51 72 94 266 406 361 594 291 425 185 235
Enterprise 42 51 55 124 153 176 242 6 7 84 84

*2035 numbers serve as exploratory scenarios given the high level of uncertainty around data centre demand
growth.
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Table A.2: Data centres installed capacity by region

Base Case
2023 2024 2030
Totalinstalled capacity (GW)
World 60 83 97 226
North America 24 35 43 102
United States 23 35 42 100
Centraland South America 0.3 0.4 0.4 0.8
Europe 13 15 16 27
Africa 0.3 0.3 0.4 0.7
Middle East 0.3 0.3 0.4 0.7
Asia Pacific 21 30 36 92
China 14 20 24 67
ITinstalled capacity (GW)
World 38 57 68 174
North America 17 26 32 82
United States 17 26 31 81
Centraland South America 0.2 0.2 0.2 0.5
Europe 8 10 11 21
Africa 0.1 0.2 0.2 0.5
Middle East 0.1 0.2 0.2 0.4
Asia Pacific 12 19 24 67
China 8 13 16 49

Table A.3: Data centres power usage effectiveness and load factor by region

Base Case
2023 2024 2030
Power usage effectiveness
World 1.53 1.43 1.41 1.29
North America 1.39 1.32 1.32 1.24
United States 1.39 1.31 1.32 1.23
Centraland South America 1.82 1.73 1.70 1.50
Europe 1.57 1.47 1.45 1.29
Africa 197 1.85 1.81 1.59
Middle East 2.06 1.96 1.92 1.70
Asia Pacific 1.68 1.55 1.50 1.35
China 1.67 1.56 1.50 1.35
Load factor (%)
World 51 49 49 48
North America 53 51 50 48
United States 53 51 50 49
Centraland South America 50 48 47 46
Europe 51 49 48 48
Africa 49 46 46 45
Middle East 49 46 46 45

Asia Pacific 50 48 48 47
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Table A.4: Data centres electricity consumption by region

Base Case
2023 2024 2030
Total electricity consumption (TWh)
World 269 361 416 946
North America 112 158 187 434
United States 108 154 183 426
Centraland South America 1.5 15 1.7 3.3
Europe 57 66 68 113
Africa 11 1.3 14 2.9
Middle East 11 13 15 3.0
Asia Pacific 93 128 150 378
China 62 84 102 277
ITelectricity consumption (TWh)
World 176 252 295 733
North America 80 120 142 351
United States 78 117 139 345
Centraland South America 0.8 0.8 1.0 2.2
Europe 36 45 47 88
Africa 0.6 0.7 0.8 1.8
Middle East 0.5 0.7 0.8 1.7
Asia Pacific 55 82 100 281
China 37 54 68 205
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Definitions

This annex provides general information on terminology used throughout this report
including: units and general conversion factors; definitions of fuels, processes and sectors;
regional and country groupings; and abbreviations and acronyms.

Units
Batteries Wh/kg watt hours per kilogramme
Coal Mtce million tonnes of coal equivalent (equals 0.7 Mtoe)
Distance km kilometre
Emissions ppm parts per million (by volume)
t CO. tonnes of carbon dioxide
Gt COz-eq gigatonnes of carbon-dioxide equivalent (using 100-year
global warming potentials for different greenhouse gases)
kg COz-eq kilogrammes of carbon-dioxide equivalent
g CO,/kWh grammes of carbon dioxide per kilowatt-hour
kg CO/kWh  kilogrammes of carbon dioxide per kilowatt-hour
Energy EJ exajoule (1 joule x 1018)
PJ petajoule (1 joule x 1015)
T) terajoule (1 joule x 1012)
GJ gigajoule (1 joule x 109)
MJ megajoule (1 joule x 10°)
kWh kilowatt-hour
MWh megawatt-hour
GWh gigawatt-hour
TWh terawatt-hour
Gas bcm billion cubic metres
MBtu million British thermal units
Mass kg kilogramme
t tonne (1 tonne = 1 000 kg)
kt kilotonne (1 tonne x 103)
Mt million tonne (1 tonne x 108)
Monetary USD million 1 US dollar x 10
USD billion 1 US dollar x 10°
USD trillion 1 US dollar x 1012
USD/t €O, US dollars per tonne of carbon dioxide
Power w watt (1 joule per second)
kW kilowatt (1 watt x 103)
MW megawatt (1 watt x 106)
GW gigawatt (1 watt x 10°)
T™W terawatt (1 watt x 1012)
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Definitions

Accelerated server: A specialised server equipped with hardware accelerators such as
graphics processing units (GPUs) or tensor processing units (TPUs), to significantly boost
computational performance for parallelisable and compute-intensive workloads. These
servers are particularly critical for applications such as Al model training, inference, and high-
performance computing.

Aviation: This transport mode includes both domestic and international flights and their use
of aviation fuels. Domestic aviation covers flights that depart and land in the same country;
flights for military purposes are included. International aviation includes flights that land in
a country other than the departure location.

Back-up generation capacity: Households and businesses connected to a main power grid
may also have a source of back-up power generation capacity that, in the event of disruption,
can provide electricity. Back-up generators are typically fuelled with diesel or gasoline.
Capacity can be as little as a few hundred watts. Such capacity is distinct from mini-grid and
off-grid systems that are not connected to a main power grid.

Battery storage: Energy storage technology that uses reversible chemical reactions to
absorb, store and release electricity on demand.

Bioenergy: Energy content in solid, liquid and gaseous products derived from biomass
feedstocks and biogas. It includes solid bioenergy, liquid biofuels and biogases. Excludes
hydrogen produced from bioenergy, including via electricity from a biomass-fired plant, as
well as synthetic fuels made with CO, feedstock from a biomass source.

Buildings: The buildings sector includes energy used in residential and services buildings.
Services buildings include commercial and institutional buildings (e.g. schools, hospitals,
public offices.) and other non-specified buildings. Building energy use includes space heating
and cooling, water heating, lighting, appliances and cooking equipment.

Carbon capture, utilisation and storage (CCUS): The process of capturing carbon dioxide
emissions from fuel combustion, industrial processes or directly from the atmosphere.
Captured CO, emissions can be stored in underground geological formations, onshore or
offshore, or used as an input or feedstock in manufacturing.

Carbon dioxide (CO,): A gas consisting of one part carbon and two parts oxygen. It is an
important greenhouse (heat-trapping) gas.

Central processing unit (CPU): A central processing unit is the primary component of a
computer that carries out instructions from programs by performing operations.

Cloud computing: Cloud computing is the provision of computing services via the internet
(“the cloud”). It enables users to access scalable and flexible services on demand, without
the need to manage physical infrastructure directly.

Coal: Consists of both primary coal, i.e. lignite, coking and steam coal, and derived fuels, e.g.
patent fuel, brown-coal briquettes, coke-oven coke, gas coke, gas works gas, coke-oven gas,
blast furnace gas and oxygen steel furnace gas. Peat is also included.
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Colocation and service provider data centres: These facilities either lease space to
customers to house their own computing and storage equipment (colocation) or provide
both the space and computing equipment (service providers).

Concentrating solar power (CSP): Thermal power generation technology that collects and
concentrates sunlight to produce high temperature heat to generate electricity.

Conventional server: A conventional server relies solely on central processing units (CPUs)
for processing, without the use accelerator chips. It handles general computing tasks using
standard memory, storage, and networking components.

Critical minerals: A wide range of minerals and metals that are essential in clean energy
technologies and other modern technologies and have supply chains that are vulnerable to
disruption. Although the exact definition and criteria differ among countries, critical minerals
for clean energy technologies typically include chromium, cobalt, copper, graphite, lithium,
manganese, molybdenum, nickel, platinum group metals, zinc, rare earth elements and other
commodities.

Decomposition analysis: A statistical method that decomposes an aggregate indicator to
qguantify the relative contribution of a set of pre-defined factors leading to a change in the
aggregate indicator. The World Energy Outlook uses an additive index decomposition of the
type Logarithmic Mean Divisia Index (LMDI).

Demand-side integration (DSI): Consists of two types of measures: actions that influence
load shape such as energy efficiency and electrification; and actions that manage load such
as demand-side response measures.

Demand-side response (DSR): Describes actions which can influence the load profile such as
shifting the load curve in time without affecting total electricity demand, or load shedding
such as interrupting demand for a short duration or adjusting the intensity of demand for a
certain amount of time.

Direct air capture (DAC): A type of CCUS technology that captures CO, directly from the
atmosphere using liquid solvents or solid sorbents. It is generally coupled with permanent
storage of the CO; in deep geological formations or its use in the production of fuels,
chemicals, building materials or other products. When coupled with permanent geological
CO, storage, DAC is a carbon removal technology, and it is known as direct air capture and
storage (DACS).

Dispatchable generation: Electricity from technologies whose power output can be readily
controlled up to the nameplate capacity, i.e. increased to maximum rated capacity or
decreased to zero, in order to help match supply with demand.

Electric vehicles (EVs): Electric vehicles comprise of battery electric vehicles (BEVs) and plug-
in hybrid electric vehicles (PHEVs).

Electricity demand: Defined as total gross electricity generation less own use generation,
plus net trade (imports less exports), less transmission and distribution losses.
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Electricity generation: Defined as the total amount of electricity generated by power only or
combined heat and power plants including generation required for own use. This is also
referred to as gross generation.

End-use sectors: Include industry, transport, buildings, agriculture and other non-energy use.
Energy demand: See total energy supply.

Energy-intensive industries: Includes production and manufacturing in the branches of iron
and steel, chemicals, non-metallic minerals (including cement), non-ferrous metals (including
aluminium), and paper, pulp and printing.

Energy-related and industrial process CO, emissions: Carbon dioxide emissions from fuel
combustion, industrial processes, and fugitive and flaring CO, from fossil fuel extraction.
Unless otherwise stated, CO; emissions in the World Energy Outlook refer to energy-related
and industrial process CO, emissions.

Energy sector greenhouse gas (GHG) emissions: Energy-related and industrial process CO,
emissions plus fugitive and vented methane (CH4) and nitrous dioxide (N>O) emissions from
the energy and industry sectors.

Energy services: A personal or societal gain from the use of energy. Include, inter alia,
heating, cooling, lighting, entertainment, mobility, nourishment, hygiene and education.
Also see useful energy.

Enterprise data centres: These facilities are run by businesses or institutions for their own
use. They are typically smaller and less efficient than other types of data centres.

Fischer-Tropsch synthesis: Catalytic process to produce synthetic fuels, e.g. diesel, kerosene
or naphtha, typically from mixtures of carbon monoxide and hydrogen (synthesis gas or
syngas). The inputs to Fischer-Tropsch synthesis can be from biomass, coal, natural gas, or
hydrogen and CO,.

Floating-point operation (FLOP): A floating-point operation is an arithmetic calculation
involving floating-point numbers, such as addition, subtraction, multiplication, or division. It
is commonly used as a unit for measuring computational workload. Floating-point operations
per second (FLOPS) is a common metric for evaluating the performance of accelerated
servers.

Fossil fuels: Consist of coal, oil and natural gas. Total fossil fuel use is equal to unabated fossil
fuels plus fossil fuels with CCUS plus non-energy use of fossil fuels.

Geothermal: Heat derived from the sub-surface of the earth, usually using a working fluid
such as water and/or steam to bring the energy to the surface. Depending on its
characteristics, geothermal energy can be used for heating and cooling purposes or be
harnessed to generate clean electricity if the temperature is adequate.

Graphics processing unit (GPU): Graphics processing units (GPUs) and other accelerators,
such as tensor processing units (TPUs), are optimised for parallel computations, enabling
faster processing of certain tasks. These types of processors are pivotal for Al model training,
inference, and high-performance computing.
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Heat (end-use): Can be obtained from the combustion of fossil or renewable fuels, direct
geothermal or solar heat systems, exothermic chemical processes and electricity (through
resistance heating or heat pumps which can extract it from ambient air and liquids). This
category refers to the wide range of end-uses, including space and water heating, and
cooking in buildings, desalination and process applications in industry. It does not include
cooling applications.

Heat (supply): Obtained from the combustion of fuels, nuclear reactors, large-scale
heat pumps, geothermal or solar resources. It may be used for heating or cooling, or
converted into mechanical energy for transport or electricity generation. Commercial heat
sold is reported under total final consumption with the fuel inputs allocated under power
generation.

Heavy industries: Iron and steel, chemicals and cement.

Hydrogen: Hydrogen is used in the energy system as an energy carrier, as an industrial raw
material, or is combined with other inputs to produce hydrogen-based fuels. Unless
otherwise stated, hydrogen in this report refers to low-emissions hydrogen.

Hydrogen-based fuels: Include ammonia and synthetic hydrocarbons (gases and liquids) that
derive their energy content from a pure (or nearly pure) hydrogen feedstock. If produced
from low-emissions hydrogen, these fuels are low-emissions hydrogen-based fuels.

Hydropower: Refers to the electricity produced in hydropower projects, with the assumption
of 100% efficiency. It excludes output from pumped storage and marine (tide and wave)
plants.

Hyperscale data centres: These are massive facilities operated by major technology
companies, such as Amazon Web Services, Google, Meta, and Microsoft. They use scalable,
highly efficient infrastructure to support cloud services, web hosting and, increasingly, Al
services.

Idle power: Idle power refers to the amount of electricity a device consumes to perform
essential background operations when it is not actively processing workloads. The idle power
ratio is the same metric, expressed as a percentage of the device's maximum rated power.
Lower levels of idle power indicate higher operational efficiency.

Industry: The sector includes fuel used within the manufacturing and construction industries.
Key industry branches include iron and steel, chemicals and petrochemicals, cement,
aluminium, and paper, pulp and printing. Use by industries for the transformation of energy
into another form or for the production of fuels is excluded and reported separately under
other energy sector. There is an exception for fuel transformation in blast furnaces and coke
ovens, which are reported within iron and steel. Consumption of fuels for the transport of
goods is reported as part of the transport sector, while consumption of fuels by off-road
vehicles is reported under the specific sector. For instance, fuels consumed by bulldozers as
a part of industrial operations is reported in industry.
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Inference: Inference is the process of deploying a trained model to analyse new or real-time
data in order to generate outputs such as predictions, classifications, decisions, or responses.
Unlike training, which involves learning from data, inference focuses on using learned
patterns to perform tasks in production environments.

Installed IT capacity: In a data centre, installed IT capacity refers to the total rated capacity
of servers, storage, and networking devices and is measured in megawatts (MW).

Investment: Investment is the capital expenditure in energy supply, infrastructure, end-use
and efficiency. Fuel supply investment includes the production, transformation and transport
of ail, gas, coal and low-emissions fuels. Power sector investment includes new construction
and refurbishment of generation, electricity grids (transmission, distribution and public
electric vehicle chargers), and battery storage. Energy efficiency investment includes
efficiency improvements in buildings, industry and transport. Other end-use investment
includes the purchase of equipment for the direct use of renewables, electric vehicles,
electrification in buildings, industry and international marine transport, equipment for the
use of low-emissions fuels, and CCUS in industry and direct air capture. Data and projections
reflect spending over the lifetime of projects and are presented in real terms in year-2024
US dollars converted at market exchange rates unless otherwise stated. Total investment
reported for a year reflects the amount spent in that year.

Latency: Network latency is a measure of the time that data takes to be communicated
across the network. Networks with a longer delay or lag have high latency, while those with
fast response times have low latency.

Levelised cost of electricity (LCOE): An indicator of the expected average production cost for
each unit of electricity generated by a technology over its economic lifetime. The LCOE
combines into a single metric all the cost elements directly associated with a given power
technology, including construction, financing, fuel, maintenance and costs associated with a
carbon price. It does not include network integration or other indirect costs

Light industries: Include non-energy-intensive industries: food and tobacco; machinery;
mining and quarrying; transportation equipment; textiles; wood harvesting and processing
and construction.

Low-emissions electricity: Includes output from renewable energy technologies, nuclear
power, fossil fuels fitted with CCUS, hydrogen and ammonia.

Maximum designed capacity: In a data centre, this refers to the maximum theoretical
capacity the facility can support when fully populated with IT equipment and operating at its
design limits. This includes constraints such as power delivery, cooling infrastructure and rack
space. In practice, the total installed capacity is often lower due to redundancy requirements,
operational safety margins, or partial buildouts.

Mini-grids: Small electric grid systems, not connected to main electricity networks, linking a
number of households and/or other consumers.
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Natural gas: A gaseous fossil fuel, consisting mostly of methane. Occurs in deposits, whether
liquefied or gaseous. In IEA analysis and statistics, it includes both non-associated gas
originating from fields producing hydrocarbons only in gaseous form, and associated gas
produced in association with crude oil production, as well as methane recovered from coal
mines (colliery gas). Natural gas liquids, manufactured gas (produced from municipal or
industrial waste, or sewage) and quantities vented or flared are not included. Natural gas has
a specific energy content of 44.09 MJ/kg on a higher heating value basis. Natural gas data in
cubic metres are expressed on a gross calorific value basis and are measured at 15 °C and at
760 mm Hg (Standard Conditions). Natural gas data expressed in tonnes of oil equivalent,
mainly to allow comparison with other fuels, are on a net calorific basis. The difference
between the net and the gross calorific value is the latent heat of vapourisation of the water
vapour produced during combustion of the fuel.

Non-energy-intensive industries: See other industry.

Non-energy use: The use of energy products as raw materials for the manufacture of non-
energy products, e.g. natural gas used to produce fertiliser, as well as for direct uses that do
not involve using the products as a source of energy, or as a transformation input
e.g. lubrication, sealing, roading surfacing, preservation or use as a solvent.

Nuclear power: Refers to the electricity produced by a nuclear reactor, assuming an average
conversion efficiency of 33%.

Offshore wind: Refers to electricity produced by wind turbines that are installed in open
water, usually in the ocean. Includes fixed offshore wind (fixed to the seabed) and floating
offshore wind.

Oil: A liquid fuel. Usually refers to fossil fuel mineral oil. Includes oil from both conventional
and unconventional oil production. Petroleum products include refinery gas, ethane, liquid
petroleum gas, aviation gasoline, motor gasoline, jet fuel, kerosene, gas/diesel oil, heavy fuel
oil, naphtha, white spirits, lubricants, bitumen, paraffin, waxes and petroleum coke.

Other energy sector: Covers the use of energy by transformation industries and the energy
losses in converting primary energy into a form that can be used in the final consuming
sectors. It includes losses in low-emissions hydrogen and hydrogen-based fuels production,
bioenergy processing, gas works, petroleum refineries, coal and gas transformation and
liquefaction. It also includes energy own use in coal mines, in oil and gas extraction and in
electricity and heat production. Transfers and statistical differences are also included in this
category. Fuel transformation in blast furnaces and coke ovens are not accounted for in the
other energy sector category.

Other industry: A category of industry branches that includes construction, food processing,
machinery, mining, textiles, transport equipment, wood processing and remaining industry.
It is sometimes referred to as non-energy-intensive industry.
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Passenger car: A road motor vehicle, other than a moped or a motorcycle, intended to
transport passengers. It includes vans designed and used primarily to transport passengers.
Excluded are light commercial vehicles, motor coaches, urban buses and mini-buses/mini-
coaches.

Power generation: Refers to electricity generation and heat production from all sources of
electricity, including electricity-only power plants, heat plants, and co-generation (i.e.
combined heat and power) plants. Both main activity producer plants and small plants that
produce fuel for their own use (auto-producers) are included.

Power usage effectiveness (PUE): The power usage effectiveness is the ratio of total facility
electricity consumption to the electricity consumption of the IT equipment (PUE = total
consumption/IT consumption). It is commonly used as a key indicator of how efficiently a
data centre uses energy. It focuses on the amount of energy used by computing equipment,
rather than electricity consumption by other facility infrastructure (such as cooling and
lighting). A low level of PUE indicates a high level of energy efficiency.

Process emissions: CO, emissions produced from industrial processes which chemically or
physically transform materials. A notable example is cement production, in which CO, is
emitted when calcium carbonate is transformed into lime, which in turn is used to produce
clinker.

Rare earth elements (REEs): A group of seventeen chemical elements in the periodic table,
specifically the fifteen lanthanides plus scandium and yttrium. REEs are key components in
some clean energy technologies, including wind turbines, electric vehicle motors and
electrolysers.

Renewables: Include modern bioenergy, geothermal, hydropower, solar photovoltaics,
concentrating solar power, wind, marine (tide and wave) energy, and renewable waste.

Residential: Energy used by households including space heating and cooling, water heating,
lighting, appliances, electronic devices and cooking.

Road transport: This refers to all road vehicle types (passenger cars, two/three-wheelers,
light commercial vehicles, buses and medium and heavy freight trucks).

Services: A component of the buildings sector. It represents energy used in commercial
facilities, e.g. offices, shops, hotels, restaurants and in institutional buildings, e.g. schools,
hospitals, public offices. Energy use in services includes space heating and cooling, water
heating, lighting, appliances, cooking and desalination.

Solar: Includes solar photovoltaics (PV), concentrating solar power (CSP), and solar heating
and cooling.

Solar photovoltaics (PV): Electricity produced from solar photovoltaic cells including utility-
scale and small-scale installations.
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Total energy supply (TES): Represents domestic demand only and is equivalent to electricity
and heat generation plus the other energy sector, excluding electricity, heat and hydrogen,
plus total final consumption, excluding electricity, heat and hydrogen. TES does not include
ambient heat from heat pumps or electricity trade.

Total final consumption (TFC): Is the sum of consumption by the various end-use sectors.
TFC is broken down into energy demand in the following sectors: industry (including
manufacturing, mining, chemicals production, blast furnaces and coke ovens); transport;
buildings (including residential and services); and other (including agriculture and other non-
energy use). It excludes international marine and aviation bunkers, except at world level
where it is included in the transport sector.

Total installed capacity: In a data centre, total installed capacity refers to both IT capacity
and the power capacity of auxiliary equipment. In practice, this is often lower than the
maximum designed capacity due to redundancy requirements, operational safety margins,
or partial buildouts.

Transport: Includes fuels and electricity used in the transport of goods or people within the
national territory irrespective of the economic sector within which the activity occurs. This
includes: fuel and electricity delivered to vehicles using public roads or for use in rail vehicles;
fuel delivered to vessels for domestic navigation; fuel delivered to aircraft for domestic
aviation; and energy consumed in the delivery of fuels through pipelines. Energy
consumption from marine and aviation bunkers is presented only at the world level and is
excluded from the transport sector at a domestic level.

Variable renewable energy (VRE): Sources of renewable energy (usually electricity) where
the maximum output of an installation at a given time depends on the availability of
fluctuating environmental inputs. VRE includes a broad array of technologies such as wind
power, solar PV, run-of-river hydro, concentrating solar power (where no thermal storage is
included) and marine (tidal and wave).

Uninterruptible power supply (UPS): An uninterruptible power supply is equipment used to
maintain power to a data centre during outages. UPS systems are crucial to ensuring the
extremely high levels of reliability that data centres must meet.

Utilisation rate: The utilisation rate of IT equipment measures the proportion of the available
computing resources actively used over a given period.
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Regional and country groupings

Advanced economies: OECD regional grouping and Bulgaria, Croatia, Cyprus®?, Malta and
Romania.

Africa: North Africa and sub-Saharan Africa regional groupings.

Asia Pacific: Southeast Asia regional grouping and Australia, Bangladesh, Democratic
People’s Republic of Korea (North Korea), India, Japan, Korea, Mongolia, Nepal, New Zealand,
Pakistan, The People’s Republic of China (China), Sri Lanka, Chinese Taipei, and other Asia
Pacific countries and territories.?

Caspian: Armenia, Azerbaijan, Georgia, Kazakhstan, Kyrgyzstan, Tajikistan, Turkmenistan and
Uzbekistan.

Central and South America: Argentina, Plurinational State of Bolivia (Bolivia), Bolivarian
Republic of Venezuela (Venezuela), Brazil, Chile, Colombia, Costa Rica, Cuba, Curagao,
Dominican Republic, Ecuador, El Salvador, Guatemala, Guyana, Haiti, Honduras, Jamaica,
Nicaragua, Panama, Paraguay, Peru, Suriname, Trinidad and Tobago, Uruguay and other
Central and South American countries and territories.*

China: Includes (the People's Republic of) China and Hong Kong, China.

Developing Asia: Asia Pacific regional grouping excluding Australia, Japan, Korea and
New Zealand.

Emerging market and developing economies: All other countries not included in the
advanced economies regional grouping.

Eurasia: Caspian regional grouping and the Russian Federation (Russia).

Figure C.1 > Main country groupings

B North America ' Central & South America M Europe M Africa [/ Middle East [ Eurasia M Asia Pacific

Note: This map is without prejudice to the status of or sovereignty over any territory, to the delimitation of
international frontiers and boundaries and to the name of any territory, city or area.
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Europe: European Union regional grouping and Albania, Belarus, Bosnia and Herzegovina,
Gibraltar, Iceland, Israel®>, Kosovo, Montenegro, North Macedonia, Norway, Republic of
Moldova, Serbia, Switzerland, Turkiye, Ukraine and United Kingdom.

European Union: Austria, Belgium, Bulgaria, Croatia, Cyprus®?, Czech Republic, Denmark,
Estonia, Finland, France, Germany, Greece, Hungary, Ireland, Italy, Latvia, Lithuania,
Luxembourg, Malta, Netherlands, Poland, Portugal, Romania, Slovak Republic, Slovenia,
Spain and Sweden.

IEA (International Energy Agency): Australia, Austria, Belgium, Canada, Czech Republic,
Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Ireland, Italy, Japan, Korea,
Lithuania, Luxembourg, Mexico, Netherlands, New Zealand, Norway, Poland, Portugal,
Slovak Republic, Spain, Sweden, Switzerland, Tiirkiye, United Kingdom and United States.

Latin America and the Caribbean (LAC): Central and South America regional grouping and
Mexico.

Middle East: Bahrain, Islamic Republic of Iran (Iran), Iraq, Jordan, Kuwait, Lebanon, Oman,
Qatar, Saudi Arabia, Syrian Arab Republic (Syria), United Arab Emirates and Yemen.

Non-OECD: All other countries not included in the OECD regional grouping.
Non-OPEC: All other countries not included in the OPEC regional grouping.
North Africa: Algeria, Egypt, Libya, Morocco and Tunisia.

North America: Canada, Mexico and United States.

OECD (Organisation for Economic Co-operation and Development): Australia, Austria,
Belgium, Canada, Chile, Colombia, Costa Rica, Czech Republic, Denmark, Estonia, Finland,
France, Germany, Greece, Hungary, Iceland, Ireland, Israel, Italy, Japan, Korea, Latvia,
Lithuania, Luxembourg, Mexico, Netherlands, New Zealand, Norway, Poland, Portugal,
Slovak Republic, Slovenia, Spain, Sweden, Switzerland, Turkiye, United Kingdom and United
States.

OPEC (Organization of the Petroleum Exporting Countries): Algeria, Bolivarian Republic of
Venezuela (Venezuela), Equatorial Guinea, Gabon, Iraqg, Islamic Republic of Iran (Iran),
Kuwait, Libya, Nigeria, Republic of the Congo (Congo), Saudi Arabia and United Arab
Emirates.

OPEC+: OPEC grouping plus Azerbaijan, Bahrain, Brunei Darussalam, Kazakhstan, Malaysia,
Mexico, Oman, Russian Federation (Russia), South Sudan and Sudan.

Southeast Asia: Brunei Darussalam, Cambodia, Indonesia, Lao People’s Democratic Republic
(Lao PDR), Malaysia, Myanmar, Philippines, Singapore, Thailand and Viet Nam. These
countries are all members of the Association of Southeast Asian Nations (ASEAN).

Sub-Saharan Africa: Angola, Benin, Botswana, Cameroon, Céte d’Ivoire, Democratic Republic
of the Congo, Equatorial Guinea, Eritrea, Ethiopia, Gabon, Ghana, Kenya, Kingdom of
Eswatini, Madagascar, Mauritius, Mozambique, Namibia, Niger, Nigeria, Republic of the
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Congo (Congo), Rwanda, Senegal, South Africa, South Sudan, Sudan, United Republic of
Tanzania (Tanzania), Togo, Uganda, Zambia, Zimbabwe and other African countries and
territories.®

Country notes

! Note by Republic of Turkiye: The information in this document with reference to “Cyprus” relates to the
southern part of the island. There is no single authority representing both Turkish and Greek Cypriot people
on the island. Turkiye recognises the Turkish Republic of Northern Cyprus (TRNC). Until a lasting and equitable
solution is found within the context of the United Nations, Turkiye shall preserve its position concerning the
“Cyprus issue”.

2 Note by all the European Union Member States of the OECD and the European Union: The Republic of Cyprus
is recognised by all members of the United Nations with the exception of Tirkiye. The information in this
document relates to the area under the effective control of the Government of the Republic of Cyprus.

3 Individual data are not available and are estimated in aggregate for: Afghanistan, Bhutan, Cook Islands, Fiji,
French Polynesia, Kiribati, Macau (China), Maldives, New Caledonia, Palau, Papua New Guinea, Samoa,
Solomon Islands, Timor-Leste, Tonga and Vanuatu.

4 Individual data are not available and are estimated in aggregate for: Anguilla, Antigua and Barbuda, Aruba,
Bahamas, Barbados, Belize, Bermuda, Bonaire, Sint Eustatius and Saba, British Virgin Islands, Cayman Islands,
Dominica, Falkland Islands (Malvinas), Grenada, Montserrat, Saint Kitts and Nevis, Saint Lucia, Saint Pierre and
Miquelon, Saint Vincent and Grenadines, Saint Maarten (Dutch part), Turks and Caicos Islands.

5> The statistical data for Israel are supplied by and under the responsibility of the relevant Israeli authorities.
The use of such data by the OECD and/or the IEA is without prejudice to the status of the Golan Heights, East
Jerusalem and Israeli settlements in the West Bank under the terms of international law.

6 Individual data are not available and are estimated in aggregate for: Burkina Faso, Burundi, Cabo Verde,
Central African Republic, Chad, Comoros, Djibouti, Gambia, Guinea, Guinea-Bissau, Lesotho, Liberia, Malawi,
Mali, Mauritania, Sao Tome and Principe, Seychelles, Sierra Leone and Somalia.

Abbreviations and acronyms

Al artificial intelligence

ASIC application-specific integrated circuit
AV autonomous vehicle

BEMS building energy management systems
CAPEX capital expenditure

CCSC carbonating calcium silica cement
CCus carbon capture, utilisation and storage
CPU central processing unit

DAC direct air capture

DFT density functional theory

DLR dynamic line rating

EMDE emerging market and developing economies
EV electric vehicle

FDD fault detection and diagnosis

FLOP floating-point operation

FLOPS floating-point operations per second
FT Fischer-Tropsch
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GDP gross domestic product

GOES grain-oriented electrical steel

GPQA Graduate-Level Google-Proof Q&A

GPU graphics processing unit

HEFA hydroprocessed esters and fatty acids

HTE high-throughput experimentation

ICT information and communications technology
loT internet of things

P Internet Protocol

IRP integrated resource plan

IT information technology

LDAR leak detection and repair

LFP lithium iron phosphate

Li-ion lithium-ion

LM language model

LLM large language model

MBtu million British thermal units

MER market exchange rates

MoE mixture of experts

MOF metal organic framework

NITRD Networking and Information Technology Research and Development
NPU neural processing unit

NSFC National Natural Science Foundation of China
NwWP numerical weather prediction

o&M operations and maintenance

OECD Organisation for Economic Co-operation and Development
OoPC ordinary Portland cement

OPEX operational expenditure

PDB Protein Data Bank

PPP purchasing power parity

PUE power usage effectiveness

PV photovoltaic

R&D research and development

RD&D research, development and demonstration
SCM supplementary cementitious material

SLM small language model

SMR small modular reactor

TPU tensor processing unit

TRL Technology Readiness Level

TSO transmission system operator

UPS uninterruptible power supply

VvC venture capital

XR extended reality
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Energy and Al
World Energy Outlook Special Report

The development and uptake of artificial intelligence (Al)
has accelerated in recent years - elevating the question of
what widespread deployment of the technology will mean
for the energy sector. There is no Al without energy -
specifically electricity for data centres. At the same time,
Al could transform how the energy industry operates if
it is adopted at scale. However, until now, policy makers
and other stakeholders have often lacked the tools
to analyse both sides of this issue due to a lack of
comprehensive data.

This report from the International Energy Agency (IEA) aims
to fill this gap based on new global and regional modelling
and datasets, as well as extensive consultation with
governments and regulators, the tech sector, the energy
industry and international experts. It includes projections
for how much electricity Al could consume over the next
decade, as well as which energy sources are set to help
meet it. It also analyses what the uptake of Al could mean
for energy security, emissions, innovation and affordability.
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