Green Hydrogen

Key challenges and perspectives from Denmark

NEA webinar
April 15th 2021
Introduction to speaker

Gregers N.S. Larsen
Advisor
Centre for Global Cooperation
Danish Energy Agency
Specialist in Modelling and RE Integration

/gregersnslarsen/
• PTX is not the primary technology, but necessary in the long run
• Useful for the “high-hanging-fruit” sectors
• DK has just started its process
• DK will use mix of PTX technologies
• There may be technical limitations in future for PTX utilization
Green Hydrogen - Basics

Renewable energy → Electricity → Water → Electrolysis → Green Hydrogen
Upgraded Green Hydrogen

where electrification is not possible

Renewable energy
Electricity
Water
Electrolysis

Hydrogen
Heavy road transport

Hydrogen
Shipping (ferries)

Hydrogen
Industry

Excess heat
District heating

E-fuels

Ammonia
Shipping

Methane
DME
e-gasoline
e-diesel
e-jet fuel

Shipping
Aviation
Heavy road transport
Direct electrification is most efficient

Electron-to-wheel efficiencies for zero emission cars

![Diagram showing electron-to-wheel efficiencies for different types of zero emission cars. The diagram compares Direct electrification (BEV), Hydrogen fuel cell vehicle (FCV), and Power to liquid conventional vehicle (e-fuels).]

- **Direct electrification (BEV)**: 77%
 - Total efficiency: 95%
 - Fuel production efficiency: 95%
 - Charging equipment (EVSE): 5% energy losses
 - Battery charge efficiency: 5% energy losses
 - H₂ to electricity conversion: 5% energy losses
 - Inversion DC/AC: 5% energy losses
 - Engine efficiency: 77% overall

- **Hydrogen fuel cell vehicle (FCV)**: 30%
 - Total efficiency: 61%
 - Fuel production efficiency: 61%
 - Charging equipment (EVSE): 5% energy losses
 - Battery charge efficiency: 5% energy losses
 - H₂ to electricity conversion: 46% energy losses
 - Inversion DC/AC: 5% energy losses
 - Engine efficiency: 70% overall

- **Power to liquid conventional vehicle (e-fuels)**: 13%
 - Total efficiency: 44%
 - Fuel production efficiency: 44%
 - Charging equipment (EVSE): 5% energy losses
 - Battery charge efficiency: 5% energy losses
 - H₂ to electricity conversion: 46% energy losses
 - Inversion DC/AC: 5% energy losses
 - Engine efficiency: 70% overall

Source: "Roadmap to decarbonising European cars", Transport & Environment, 2018
GREEN HYDROGEN TECHNOLOGIES IN PLAY
Electrolysers - Alkaline vs. PEM

Alkaline

Cheaper
No use of rare materials
Slightly better efficiency

Limited ramping
Very limited start/stop

PEM

Good ramping
Can cold start

Rare materials
More expensive
Electrolyser - Alkaline vs. PEM

Alkaline
- Cheaper
- No use of rare materials
- Slightly better efficiency
- Limited ramping
- Very limited start/stop

PEM
- Good ramping
- Can cold start
- Rare materials
- More expensive

BOTH
VRE both baseload and flex
VRE both baseload and flex

More VRE is to make this the default, not a rare occurrence

Stable overproduction compared to general demand

Higher VRE production peaks
Substantial industrial interest in hydrogen and power-to-x

CIP and partners
- Vision of 1 GW electrolysis
- 900,000 tons of ammonia

Industrial consortium announced May 25th 2020
- Ørsted, A.P. Møller - Mærsk, DSV Panalpina, DFDS, SAS, Copenhagen Airport
 - vision of 1.3 GW electrolysis plants for production of green fuels

Maersk Mc-Kinney Møller Center for Zero Carbon Shipping
- Linked to Maersk’s ambition on the first CO2-free ocean-going vessel no later than 2030
- 133 mill. € over the next 10 years
Examples of ongoing RD&D projects
Substantial industrial interest in hydrogen and power-to-x

Greenlab Skive
 Hydrogen, methanol and storage
 12 MW electrolysis +1.6 MWh battery

Everfuel and Shell
 Hydrogen
 20 MW -> 1 GW PEM for use in refining

Hydrogen Valley and Air Liquide
 Hydrogen
 1 MW PEM for transportation

Ørsted and partners (H2RES)
 2 MW electrolyses
 For transportation
PTX will grow to become a significant industry in Denmark's Energy system.
15,000 GWh in 2040
~8% of DK energy consumption 2020
Topics and messages
PTX in Denmark, lessons being learned and the role of PTX in the future

• Heavy transport, shipping and aviation will be major consumers of PTX
• Projections to have PTX as major part of Denmark’s energy system
• PTX less efficient and costlier than direct electrification – high hanging fruits
• The relevant industries, with support from government, are already working on PTX
Thank You