

SEAD INDIA WORKSHOP COP 26 PRODUCT EFFICIENCY CALL FOR ACTION INDUSTRY PERSPECTIVE

SEAD: Action on product efficiency COP26 & beyond

- Setting global product policy to double the efficiency of four key products sold globally by 2030 industrial motors, air conditioners, refrigerators, lighting
- Supporting the delivery of crucial national climate change targets
- Providing consumers and businesses with more efficient products that are affordable and cost-effective to own and operate
- Stimulating innovation and provide businesses with export opportunities
- Promoting making products both energy efficient and climate friendly simultaneously by reducing the use of refrigerants in cooling appliances.

Energy conservation

- India has around 6 to 7 % penetration of Room AC
- The per capita consumption of energy per year in space cooling is 69 KWh (IEC 2018 report) against world average of 272
- With increase in penetration the demand for energy will increase and needs to be addressed
- Energy efficiency program is one of the tool to conserve energy

Pre EE labelling program

The sale of products was based on brand and unverified claims. ☐ The running cost of the AC was a concern \Box The production and sale was ~ 2.1 Mn in 2010 ■Small manufacturers competed with organized players ■Manufacturer's investment in R & D was low and labs were not meeting the ISO 17250 standards ■Window AC share was ~ 30 % Units were imported as CBU as production capacity was limited

11/4/2020

India journey

■ Phase-1 : Aligned the products with the EE program and upgraded as per the tables from 2010 to 2016 (Three upgrades) ☐ Phase-2 Migration from COP to ISEER, a technology agnostic EE program based on ISO 16358 standard. ■ Temp range and bin hours as per India Hot and Dry climate zone ☐ India has considered 24 to 43 Deg C temp range against 21 to 35 in ISO 16358 with 1600 hours of use per year ■ In phase-2 to meet higher Star requirements, India specific design with Inverter technology, larger condensers and evaporators with small diameter tubes and BLDC motors technology adopted ■ Manufacturers have absorbed the technology and are at par with global players

Post EE labelling program

☐ The program brought authenticity to the parameters published ☐ Customer got a guided choice of selection, experienced the lower running cost and could relate to the buying decision ■ Manufacturers can plan the design and marketing strategies ☐ Manufacturers invested in R & D and Technology, accredited laboratories and manufacturing set-up ☐ The sales data reflects the maturity of Indian customers as they

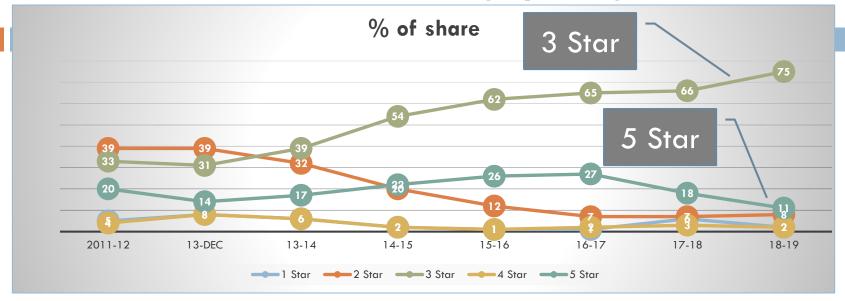
understand the importance of EE and running cost

Comparison ISEER & ISO standard performance

	1	2	3	4	5	EESL
ISSER next table	3.3	3.5	3.8	4.4	5.0	5.4
ISO (CSPF) ~ 20 %* plus	4.0	4.2	4.55	5.3	6.0	6.5

^{*} Actual test data of Inverter A/C from 4 manufacturers taken from Clasp/PWC report 17 Feb, 2014

- ☐ India ISEER is stringent
- □ CSPF: ISO recommended temperature Range: 21 to 35 Deg C
- ☐ ISEER: India climate range 24 to 43 Deg C
- RAMA suggests that study project should be taken



Split system table 2009 to 2020

Year	3 Star	5 Star	
2009	~ 2.3		No star labelling program
2010	2.7	3.1	
2012	2.9	3.3	
2014	3.1	3.5	
2016 July	3.5	4.5	Inverter table ISEER
2018	3.5	4.5	ISEER common table for Inv & Fix speed
Next	3.8	5.0	Planned
EESL		5.4	

Statistics of labelling program

- 3 Star (75%) is preferred choice followed by 5 Star (11%)
- One and Four Star are 2% each & 2 Star 8%
- Many manufacturers do not offer in 1, 2 and 4 Star category
- Though EE is preferred, study is required to understand why Five star share is reducing.
- EESL scheme has also not gathered traction,

Industry perspective ... 1/2

- Comparison of products of different countries should be made as per ISO 16358 standard for realistic comparison
- The technology adopted is at par with the developed countries.
- Share of Inverter AC reached above 50 % in 5 years which is one of the fastest growth in the world
- CLASP report study indicates the average usage is 1200 hours against 1600 considered in ISEER, we should revisit the program parameters
- With comfort for all the EE labelling program should be crafted with 10 years perspective

Industry perspective ... 2/2

- Ratcheting the level should be carefully done, by keeping balance between affordability & EE and should not allow the weighted average efficiency of products sold to slide and Window AC share to go up
- Investment for each changeover is ~ 50 Mn \$ and manufacturers need time to recover the cost
- The challenge is to offer affordable products for which not only technology but supply chain and operational cost optimization needs to be addressed
- Policy intervention are required to promote high efficiency products
- Growth is essential for further investment

Jitendra Bhambure

Advisor Technology Blue Star Ltd Executive committee member RAMA UNEP: TEAP task force member and RTOC member

<u>im.bhambure@gmail.com</u>

jmbhambure@bluestarindia.com