Recent IEA analyses

Reports from the Energy Technology and Policy (ETP) Division
ETP Special Report on Clean Energy Innovation
Energy Technology Perspectives 2020
ETP Clean Energy Technology Guide
CCUS in Clean Energy Transitions: ETP Special Report
Global EV Outlook 2020; Entering the decade of electric drive?

Other analyses
Article: Batteries and hydrogen technology: keys for a clean energy future
Article: Clean energy progress after the Covid-19 crisis will need reliable supplies of critical minerals
Commentary: As the Covid-19 crisis hammers the auto industry, electric cars remain a bright spot
Commentary: Changes in transport behaviour during the Covid-19 crisis
Tracking Clean Energy Progress 2020; Transport; Hydrogen
Setting the scene: Despite considerable inertia, momentum is building for the clean energy transition
Governments are setting ambitious goals…

More and more sub-national, national, and supra-national governments are setting targets to attain net-zero greenhouse gas emissions in the coming decades.

Net-zero emissions targets from China, Japan and South Korea have been announced subsequent to the publication of ETP 2020.
Focusing on the power sector is not enough to reach climate goals

Clean energy technology progress in the power sector and with electric cars is encouraging, but alone not sufficient to reach climate goals. About half of all CO$_2$ emissions today are from industry, transport and buildings.
Net-zero emissions is not viable without a lot more innovation

Technologies at prototype or demonstration stage today contribute almost 35% of the emissions reductions to 2070; a further 40% comes from technologies that are at early stages of adoption.
Transport
Heavy-duty trucks, shipping, and aviation remain net emitters

Most modes of transport are decarbonised by 2070 in the Sustainable Development Scenario, but trucking, shipping and aviation continue to emit due to challenges decarbonizing these modes.
Decarbonising transport necessitates a shift to low-carbon fuels

In the Sustainable Development Scenario, electricity accounts for more than 35%, and hydrogen and hydrogen derived fuels account for more than 30% of final energy demand in the transport sector by 2070.
Heavy duty trucking
Regulations for heavy-duty vehicles are a critical first step

Vehicle efficiency and \(\text{CO}_2\) emissions standards for heavy-duty vehicles are catching up with those for light-duty vehicles.
Decarbonising trucks will require a broad portfolio of strategies

Global CO₂ emissions from trucks by abatement measure (left) and technology readiness level (right) in the Sustainable Development Scenario versus the Stated Policies Scenario

For heavy-duty trucks, operational and technical efficiency together contribute nearly 45%, electricity an additional 31%, and hydrogen and biofuels together almost 35% of cumulative CO₂ emission reductions in the Sustainable Development Scenario.
Low-carbon fuels reduce CO$_2$ emissions in trucking...

The fuel mix diversifies first to liquid fuels, before ultimately shifting to electricity and hydrogen. Vehicle efficiency improvements by 40-45% as more trucks electrify or are equipped with fuel cells.
…and zero-emission “destination” powertrains offer hope for decarbonising

Nearly half of medium-freight trucks have hybrid or full electric powertrains by 2040, while most medium- and heavy-freight trucks operate with batteries or hydrogen fuel cells in 2070 in the Sustainable Development Scenario.
Batteries and fuel cells fulfill different niches in road freight

The prospects for competing powertrain options hinge on improvements in the cost and performance of batteries and fuel cells.

The effect of battery and fuel cell prices on total cost of ownership of heavy-duty trucks in long-haul operations

The prospects for competing powertrain options hinge on improvements in the cost and performance of batteries and fuel cells.
Long-term technology options for transport: electricity and hydrogen

Prospects for competing powertrain options hinge on the future costs and performance of batteries and fuel cells as well as accompanying infrastructure.
Uncertainties in the competition and complementarity of batteries and fuel cells

1. **Future trajectories of cost and performance** (energy and power density, durability, charging speed) of **batteries** and **fuel cells**
 - Future progress in battery chemistries and production processes
 - Scale economies in fuel cell production

2. **Future trajectories of cost and performance** of producing and delivering **electricity** and **hydrogen**.
 (Variable renewables like solar and wind, batteries and other technologies for energy storage, electolysers to make “green” hydrogen)

3. Operating and purchase costs will also be influenced by:
 - The policy environment
 - **Costs and utilisation rate of the infrastructure** (charging / hydrogen refuelling stations)
 - The **well-to-wheels efficiency** of competing pathways
Maritime shipping
International shipping carries three-quarters of the world’s goods

Global freight activity, energy consumption and CO₂ emissions in international maritime shipping by vessel type and fuel, 2019

Bulk carriers and container ships dominate in international shipping, together accounting for about 60% of total energy use in the sub-sector – almost entirely in the form of oil – and CO₂ emissions.
Reducing shipping emissions requires efficiency and alternative fuels. Biofuels and energy efficiency are the main contributors to shipping emission reductions in the Sustainable Development Scenario in the short term, while hydrogen and ammonia contribute more in the long term.
Ammonia, biofuels, and hydrogen replace oil in maritime shipping

Emissions from international shipping fall by more than four-fifths between 2019 and 2070 in the Sustainable Development Scenario, mainly due to switching to biofuels and hydrogen-based fuels.
All these alternative low-carbon fuels and powertrains are expensive. The high cost of storing hydrogen makes it less economical than ammonia. The economics and technical performance of electric vessels need to improve to become a competitive technology for long-distance shipping.
Aviation
Aviation activity is set to rebound by the mid-2020s

Despite strong policy measures, including taxes that reduce overall demand, air passenger traffic increases by about 350% through to 2070 in the Sustainable Development Scenario.
Long-term efficiency and fuel opportunities depend on distance

Technology potential for CO₂ emissions reduction declines as distances increase

Example efficiency opportunities in operations and technology

Current generation
- Single engine or electric taxiing
- Cabin weight reduction
- Congestion management
- Optimised departures / approaches
- Reduced cruise inefficiency
- Increased engine / aero maintenance
- Increased use of composites

Next gen
- Ultra-high bypass ratio
- Double-bubble
- Open rotor

Disruptive (likely 2040 at earliest)
- Hybrid-electric aircraft (Boundary layer ingestion)
- Blended wing-body aircraft
- Full electric aircraft
- Hydrogen jet engine aircraft
- H₂ fuel cell aircraft
Sustainable Aviation Fuels are critical to reducing aviation emissions

Rigorous policies to promote the development and adoption of sustainable aviation fuels play the leading role in reducing the climate impacts of aviation in the Sustainable Development Scenario.
Strong policies will be needed to reduce aviation emissions

Rigorous policies that promote sustainable aviation fuels, efficiency and shifts to alternative transport modes reduce emissions substantially in the Sustainable Development Scenario.
Policies will be needed to incentivise alternatives to fossil-derived jet fuel

With a carbon price of USD 150/tonne, sustainable aviation fuels begin to compete with oil-based jet kerosene, though policy support will need to account for the volatility and uncertainty of future feedstock costs and oil prices.