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Abstract  
Changing energy price in competitive energy markets, uncertain future carbon price, 
uncertain government policy on climate change, and uncertain international regime 
on climate change mechanism all pose uncertainties to power sector investment. In a 
process of project investment evaluation, national governments and development 
banks traditionally use the methodology of discount cash flow (DCF). Unfortunately, 
this methodology cannot fully quantify these risks and uncertainties. Real Option 
Analysis (ROA) offers a nuanced approach to strategic investment that quantitatively 
takes into account investment risks and the value of the open options for budget 
decision-makers. The objective of this paper is to present a methodology and a 
computer model developed by the International Energy Agency (IEA) to quantify the 
impacts of climate change policy uncertainties on power investment using ROA 
approach. The methodologies include the traditional discounted cash flow approach 
to calculating project net present value, stochastic simulation to capture the 
characteristics of uncertain variables, and real options to capture investors’ flexibility 
to optimize the timing of their investment. This paper presents details of the 
methodology framework, mathematics functions, database, and operation of the 
model. The results of this analysis are found in Blyth and Yang (2006) and will be 
included in a forthcoming book of the IEA (2007). Having been applied for case 
studies, the methodology and modeling have proven effective. This paper concludes 
that ROA could become a useful tool for the government policy makers and private 
investors to quantitatively analyze the impacts of climate change policy uncertainty 
and energy price uncertainty on energy sector investment.  

 
 
This paper describes the methodology and model used in an information paper of the IEA 
(Blyth and Yang, 2006) and a forthcoming book of the IEA (2007).  The methodology and 
model will be used in future work investigating the implications of uncertainty for investment 
decisions.  As a reference document, it has not been approved by any IEA committee.   
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Executive summary  

In a competitive energy market, government regulation, development of technologies and 
uncertain energy and CO2 prices pose the greatest risk to a sure recovery of energy sector 
investment. In project evaluation for investment, traditional methodologies such as 
discounted cash flow (DCF) cannot fully quantify these risks and uncertainties. As presented 
in this paper, Real Option Analysis (ROA) offers a nuanced approach to strategic investment 
that considers the value of the opened options for budget decision-makers. The Real Option 
problem can be viewed as the optimization of available options amidst uncertainty over real 
assets like project investment capital. In the energy and environment sectors, ROA enables 
analysis of different risk factors, supporting a direct comparison of CO2 price uncertainty with 
other risks. 

Over the past 30 years, ROA has emerged from financial economics theory and the 
appraisal of project investments. A handful of computer models now use ROA in the 
quantitative analysis of energy and environmental investment, though very few apply ROA to 
quantify the impacts of climate change policy and uncertain energy and carbon prices on 
power sector investment. Inspired by the Electric Power Research Institute’s (EPRI’s) first 
Greenhouse Gas Emissions Reduction – Cost Analysis Model (GHG-CAM) model, the 
International Energy Agency (IEA) developed a model to address this lapse.  

The IEA model presented in this paper expands the menu of options and adds several new 
features, including an ability to model carbon price jump and a new plant’s construction and 
development under multiple uncertain factors at the same time. Nowadays, it is widely 
debated that the carbon price will likely jump at the end of the first ‘commitment period’ of the 
Kyoto Protocol due to the international climate change regime and government climate 
change policy. The carbon price jump will considerably affect decisions of power investors. 
There is an urgent need to evaluate the impact of carbon price jump on power sector 
investment. However, our extensive literature reviews show that no modeling research or 
study has been done to analyze the impact of carbon price jump on investors’ decisions.  

The IEA’s modeling methodology makes also another significant contribution to the ROA 
literature. As shown in the literature review, the application of ROA modeling has been so far 
limited to one-stage investment and mostly one stochastic variable. In contrast, the IEA’s 
approach is to model construction or development of a new power plant from a green field 
with multiple stage investments2, using stochastic variables simultaneously taking into 
account uncertainties of energy price and carbon price.       

This paper presents the IEA modeling methodology, illustrates its supporting database, 
states the assumptions in the model, describes the issues that the model can look at, and 
demonstrates the potential for the model to be used in future projects.  

The methodological framework of the IEA’s modeling can be divided into four major 
modules. Module 1 is a database of sorted primary data, such as energy prices, carbon 
prices and the technologies of power production. Module 2 allows for the development of 
scenarios and the processing of relevant data. Once treated, these data and scenarios enter 
Module 3’s traditional discounted cash flow analysis and Module 4’s real options analysis. 

The detailed mathematical equations used in the computer model also appear in this paper. 
Developed in an MS-Excel environment and supported by commercial software named Real 
Option Calculator, these equations include those of deterministic method, dynamic and 
stochastic analysis method, and real option optimization method. 

                                                           
2  For example, IGCC investment in stage I and CCS investment in stage II. 
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The IEA’s model enables a range of applications: (1) a model without options to estimate the 
risk premiums of the project; (2) a basic option model to simulate a project from one baseline 
scenario to a single post-exercise scenario; (3) a multiple options model to account for many 
risks; (4) a multiple options model with allocated probabilities to specify a probability 
distribution to indicate the likelihood of each of the target scenarios; and (5) a nested 
(compound options) model to model a series of investments over time. 

To represent carbon price uncertainties, we used Geometric Brownian Motion, an annual 
random walk model to simulate uncertain prices. As mentioned above, we then developed a 
special model to simulate climate change policies’ effect on uncertain carbon prices, 
focusing on the effects of a potential jump in carbon prices by between 1% and 200% of 
prices before the jump.   

From historical data of OECD nations, we calculated the correlation coefficients. The results 
illustrate a parallel between gas prices and electricity prices in several domestic markets, 
where gas plants are on the margin of the merit order. In other cases, correlation is much 
more subtle. When applying the model to case studies, we assumed gas plants as at the 
margin, and set the correlation coefficient between gas and electricity close to 1.  

We applied the model and methodology to nine basic case studies and three specific case 
studies. These case studies involve power generation by using fossil fuels, nuclear energy 
and carbon capture and storage (CCS) technologies, under different carbon price, energy 
price and emissions trading schemes. The results show that the methodology and modeling 
can derive many interesting implications for policy-makers and investment decision-makers 
in power sector investment. For detailed analysis and results of these case studies, please 
see Blyth and Yang (2006) and IEA (2007). 

With further development of the database and the model in the next phase of study, we will 
be able to undertake modeling analyses for more complicated issues. These may include:  

(1) Applying ROA in a power sector rather than only for a single power technology 
investment.  

(2) Undertaking case studies for energy efficiency and demand side management for 
end-users. 

(3) Modeling investment in renewable energy technologies.  

(4) Applying ROA in other sectors such as iron and steel, pulp & paper, aluminum and 
petrol-chemical industries.  
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1. Introduction 

Worldwide, the power sector faces three major challenges: reforms of power markets to 
encourage competition, requirements to mitigate greenhouse gas emissions, and rising 
energy prices. When considered by industrial decision-makers, the risks of a competitive 
market bear little resemblance to the uncertainties facing the monopolies of integrated power 
markets. Policies to mitigate climate change have created a marketable value for CO2 
emissions, compelling the new currency’s consideration during the process of strategic 
investment in the power sector. Most electricity producers in Europe now participate in a 
mandatory emissions trading scheme. Arguably the most efficient form of regulation in terms 
of its effects on industrial competition, the scheme still introduces the investment risk of 
carbon price fluctuation. Furthermore, persistently high oil and gas prices have considerably 
increased production costs and muted energy demand. These regulatory uncertainties and 
variable prices for energy and CO2 pose undisputed risks to the sure recovery of energy 
sector investment. 

Risks and uncertainties often compel investment in flexible power production technologies 
with short periods of return on investment, brief construction times and the capacity to switch 
between fuels. Economies of scale, however, require investors to develop large power 
facilities to minimize the cost of unit production. To better navigate these conflicting 
dynamics, power sector investors have adopted new methods of financial assessment to 
complement the traditional approach of deterministic discounted cash flow. Such 
assessments also guide governments’ policy formulations to sustain and secure domestic 
power markets. To inform the decisions of both policy-makers and corporate strategists, the 
IEA created a new model to address the complex and myriad variables influencing 
investment in power generation. 

Investment in the power sector has three important characteristics. First, the investment is 
partially or completely irreversible. Once invested, the capital costs become totally or 
partially sunk. Second, there is always uncertainty over the future return from the 
investment. Future energy price and carbon price are unpredictable which makes cash 
inflow of the project return uncertain. Third, the investors have choices to invest at flexible 
timing. They can invest in a power plant now if they think the return of the investment is high 
enough to recover all the investment risks, or they can postpone the investment to get better 
information on the future prices. They will never invest until future major uncertainty is 
cleared. In other words, investors have the opportunity or option but not the obligation to 
invest in a project in a period of time. They can also have flexibility to abandon, expand, 
contract, extend and shorten the operation of the project even after the investment. A good 
project evaluation methodology or model should incorporate in a quantitative way all the 
three characteristics: irreversibility, uncertainty and flexibility.  

Traditional appraisal methodologies for project investment can hardly incorporate the above 
three characteristics. Traditionally, people use pay-back period method and/or discounted 
cash flow (DCF) method in project appraisals. In a payback period calculation, a decision-
maker would estimate the number of years it would take for the income from a particular 
investment to pay back the costs of the investment. This approach is theoretically flawed 
because of a couple of shortcomings. First, it puts a fixed time horizon on considering the 
consequences of the investment. Such a measure may be biased against investments 
whose most significant benefits come after their payback period. Second, a payback period 
calculation does not take into account the timing of returns to investment (i.e., the time cost 
of money). This methodology is simple and used by individuals and/or industrial 
stakeholders who do not have significant amounts of transactions, or when the time lag 
between the initiation of the transaction and the cash flow is very short. Examples of the 
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application of the method include retrofitting a part of plant facility or replacing equipment. 
However, very few people use the method in evaluating a power investment project.  

More widely used methodology in project appraisal is the DCF. This approach describes a 
method to value a project or an entire company. The DCF methods determine the present 
value of future cash flows by discounting them using an appropriate cost of capital (or 
discount rate). This is necessary because cash flows in different time periods cannot be 
directly compared. People prefer money sooner rather than later due to the fact that a dollar 
in one’s hand today is worth more than a dollar one may receive tomorrow. The same logic 
applies to the difference between certain cash flows and uncertain ones. This is due to 
opportunity cost and uncertainty over time. DCF can partially take into account risk and 
uncertainty of future value of currency by using different discount rate.  However, it involves 
at least two problems. First, the forecast of future cash flows is uncertain (due to energy 
price and carbon prices changes), but the cash flow in DCF is assumed certain. Second, it is 
difficult to determine the appropriate cost of capital. Users of the methodology argue that 
they can deal with cash flow uncertainties by raising the discount rate. However, it is hard to 
justify to which level the discount rate will really incorporate all the future risks. 

Stochastic methods and multiple scenarios have been used to deal with uncertain variables 
in the DCF. When calculating the DCF, investors rest on a series of simplifying assumptions. 
In the presence of certain types of uncertainty about the future costs and benefits of capital 
investments, investors have to estimate the likelihood of various future scenarios, calculate 
the DCF in each of these futures, and sum to find the average expected DCF across the 
possible futures. For example, if an investor envisions a two-thirds chance of a DCF of $100 
and a one-third chance of a DCF of $40, the expected DCFs is $80. However, this 
methodology still focuses on whether or not to invest the project. It does not tell the investors 
the best timing of investment. A Real Options Approach (or ROA) can incorporate stochastic 
variables and multiple scenarios and timing of investment together.  

ROA is new in assessing investment in climate change projects. The term "Real Options" 
can be traced to Myers (1977), who first identified investments in real assets as mere 
options. A real option is a permit with different value at different time periods to undertake 
some business decision, typically an option to make a capital investment. For example, an 
opportunity to invest in the expansion of a firm's factory is a real option. In contrast to 
financial options a real option is not tradable - e.g. the factory owner cannot sell the right to 
extend his factory to another party, only he can make this decision. The terminology "real 
option" is relatively new, whereas business operators have been making capital investment 
decisions for centuries. However the description of such opportunities as real options has 
occurred at the same time as thinking about such decisions in new and more analytically-
based ways. As such, the terminology "real option" is closely tied to these new methods.  
ROA offers a nuanced approach to strategic investment that considers the value of the 
opened options for budget decision-makers.  

A firm can use real option to cope with investment uncertainty and flexibility. By purchasing a 
permit, a firm may have the real option of expanding, downsizing, or abandoning other 
projects in the future. By investing in R&D, the firm may have real options for further 
business development, mergers, acquisitions, and licensing (both physical and tangible 
assets). With such options, the firm will be able to flexibly manage its irreversible investment 
capitals, and at the same time, taking into account the uncertainties and risks of future cash 
flow. Because of this, the application of ROA theory and modeling in power sector 
investment and climate change uncertainty policy is developing quickly. 

ROA sees the investment problem and uncertainty in a particular way. It focuses for example 
on the timing of the decision not on whether to do the project or not. It has a strong ability to 
explicitly analyse the effects of different sources of uncertainty on the cash-flow, providing a 
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powerful tool for giving insights into the question that motivated climate change policy study. 
Combining ROA with stochastic methods and multiple scenarios, we will be able to calculate 
project DCF at different future time milestones. With this methodology, we can explore 
answers for questions such as (1) “If I do hold on investment for a couple of years when 
significant risk is gone, what is the DCF at 90% of probability? and (2) Does climate change 
policy uncertainty pose a significant risk to power sector investments, and if so, how could 
policy design be improved to reduce these risks”? Because of its ability to do so, ROA has 
been recently applied in climate change policy analysis.  

One example of its application to climate change policy is Laughton et al (2003) which 
applied ROA to the assessment of geological GHG sequestration, using a simplified model 
of the option to sequester part of a pure CO2 stream of to illustrate the process of relevant 
risk valuation. As Laughton concluded, the employment of a traditional deterministic discount 
cash flow (DCF) can warp valuation, as the DCF does not account for the complex effects of 
risk and uncertainty on values. However, as acknowledged by the author, Laughton’s study 
was quite preliminary, excluding key elements such as price variables from the model. The 
IEA’s model includes price variables. 

Using real option valuation in an environment of uncertain CO2 price, Sekar (2005) evaluated 
investments in three coal-fired power generation technologies: pulverized coal, standard 
Integrated Coal Gasification Combined Cycle (IGCC) and IGCC with pre-investments to 
reduce the cost of future CCS retrofitting.  Sekar developed cash flow models for each of the 
three technologies, though the simulation’s structure meant that the CO2 price appeared as 
the sole uncertain variable in the cash flow. Sekar’s approach combined two elements: 
market-based valuation to evaluating cash flow uncertainty, and dynamic quantitative 
modeling of uncertainty. The study used Monte-Carlo cash flow simulation in the place of 
simple scenarios to incorporate cash flow uncertainty, but energy prices were not modeled 
as stochastic variables. The IEA’s model includes price stochastic variables. 

Using ROA to evaluate risks to the development of new nuclear power plants, Rothwell 
(2006) modeled three uncertainties: price risk, output risk and cost risk. Using a Monte Carlo 
simulation, Rothwell derived various risk premiums, between $383/kW and $751/kW that 
would trigger investment in the United States’ new nuclear power plants. The study, 
however, did not model uncertain carbon prices and their influence on power sector 
investment. The IEA’s model includes uncertain CO2 prices. 

Laurikka (2006) presented a simulation model using ROA to quantify the option value of 
Integrated Gasification Combined Cycle (IGCC) technology within an emissions trading 
scheme. The study designed and simulated three types of stochastic variable: the price of 
electricity, the prices of fuel and the price of emission allowances. As Laurikka concluded, 
(1) a straightforward application of the traditional project appraisal on a scenario of IGCC 
can bias results for current competitive energy markets regulated by an emissions trading 
scheme; (2) the potential combination of several uncertainties with real options rendered the 
European Union Emission Trading Scheme (EU ETS) extraordinarily complex; (3) when 
accounting for uncertainties, the IGCC technology is not competitive within the EU ETS. 
However, while simulating CO2 prices in EU ETS, Laurikka did not consider the possible 
jump of CO2 prices. The IEA’s model simulates CO2 price jump. 

Other recent applications of ROA in the energy sector include (1) Siddiqui (2007), which 
evaluated the United States’ federal strategy for renewable energy research, development, 
demonstration, and development; (2) Marreco and Carpio (2006), which examined the 
flexibility of the Brazilian power system; and (3) Kuper and Soest (2006), which evaluated 
the influence of uncertain oil prices on energy use.    
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In 2005, the Electric Power Research Institute of the USA (EPRI) developed the Greenhouse 
Gas Emission Reduction Analysis Model, using a discounted cash flow (DCF) analysis to 
evaluate the revenues, costs and expected after-tax gross margin accruing from investment 
in the technology of greenhouse gas reduction. The model relies on sophisticated statistical 
and economic tools, including Monte Carlo simulation, and methods of real options analysis 
and decision to enable an evaluation of specific GHG reduction strategies that account for 
individual risks, uncertainties and real options. The model incorporates energy prices and 
CO2 trading prices with correlations. Developed in an MS Excel environment, the model is 
supported by a commercial software program called Real Option Calculator or ROC. 
However, as of October 2006, the EPRI has not reported any case study using power firm’s 
real data. 

Between August 2005 and October 2006, the International Energy Agency (IEA) undertook a 
study on quantification of climate change policy uncertainty or risk on power sector 
investment. In designing the study, the IEA aimed to (1) develop its in-house capability of 
using ROA approach; (2) analyze the influence of climate change policy uncertainty on 
individual investments in the power sector; (3) explore the consequences of policy 
uncertainty on the power sector’s evolution and associated risk for policy objectives such as 
greenhouse gas emission mitigation and energy security; and (4) examine the potential to 
reduce the effects of uncertain climate change policy through improved policy design.  

Within the study, the IEA developed a model called Modeling INvestment with Uncertain 
ImpacTs (MINUIT). The IEA’s model mimics EPRI’s first version of the GHG-CAM model. 
Compared with GHG-CAM, the IEA’s model has the following advantages: expanded menu 
of available options, new modeling module for a new plant’s development and construction. 
In addition, we created a module to model carbon price and energy price jump. The IEA’s 
model with stochastic simulation imitates or evaluates the desired true characteristics of a 
number of variables in a single run of the model. As such, the model will be able to identify 
the impacts of not only individual risk factor, but also a group of risk factors such as both 
uncertain energy price and uncertain carbon price. In that way, we will be able to identify the 
largest uncertain factor affecting power investment. 

We applied the model in a number of case studies that are different from all the previous 
studies indicated in the literature review. For example, in contrast to Laughton et al (2003), 
we incorporated and modeled all energy prices with stochastic variables. As in Seker’s 
study, we treat the price of CO2 as a random variable. In addition, we model the electricity 
price and the primary energy price as random variables simultaneously which was not 
modeled in Seker’s study. 

Within this paper, we present this type of analytical tool as a potential guide for informing 
policy-makers and investors to the effects of regulatory uncertainty. The purpose of this 
paper is to provide a detailed explanation of the modeling methodology. Interesting readers 
can find our case study results in Blyth and Yang (2006) and IEA (2007).  

This paper is composed of 8 sections. Following this Introduction, Section 2 presents the 
methodological framework used in the study. In Section 3, we briefly describe the database 
to support the model. Parameters to support the uncertainty modeling are calculated in 
Section 5. Real Options Analysis, a key section in this paper, is presented in Section 6. We 
show a sub-model for project sensitivity analysis in Section 7. Finally, this paper concludes 
that ROA could become a useful tool for the government policy makers and investors if they 
want to incorporate climate change policy uncertainty and energy market uncertainty in their 
investment policy decision-making. 
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2. IEA’s Modeling methodology framework 

The IEA’s modeling methodology draws on Dixit and Pindyck (1994).  As illustrated in Figure 
1, the IEA’s modeling methodology divides into four modules. Module 1 is a database of 
sorted primary data including energy prices, carbon prices and the technology of power 
production. Module 2 allows for the invention of scenarios and the processing of relevant 
data. Once treated, these data and scenarios enter Module 3’s discounted cash flow (DCF) 
analysis and Module 4’s real options analysis. In Module 3, we developed two macros to 
perform the traditional DCF analysis and search for breakeven points where power 
production may switch between generation technologies. Different electricity and carbon 
prices drive the module running the search. Once the critical points of technology switching 
appear, the correlating CO2 price and other data are recorded for reporting and fed into the 
next module for ROA model running. 

In Module 4, while setting the CO2 and energy prices to change randomly, we calculate the 
NPVs for all candidate technologies in each of the planning years. We then run the real 
options calculator, a commercial software programme of real options analysis, to produce 
the optimal investment options for different technologies during different years. Our 
sensitivity analysis of the projects’ NPVs accounts for the key parameters of capital 
investment, operation and maintenance (O&M) costs, plant factors, and price volatilities. 
Finally, by comparing the results from Modules 3 and 4, we estimate and report the risk and 
uncertainty premiums in the energy sector investments. The following sections detail the IEA 
methodology and the above-mentioned individual modules.   

 

Figure 1  Methodological framework of the modeling 

 

Note: EED – Energy Efficiency and Environment Division of the IEA, WEO – World Energy Outlook; LTO – Long-
Term Co-operation and Energy Policy Analysis; ESD – Energy Statistics Division; ETC – Energy Technology 
Collaboration. 
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3. Module one: Database Development 

The database and its structure for the modeling are shown in Figure 2. The data are 
collected and stored in three major groups: economic and financial, technical, and 
environmental. For example, the economic and financial data group include capital 
investment costs (or option exercise costs), operation and maintenance (O&M) costs, and 
fuel prices and CO2 emissions trading prices. We obtained these data mainly from three data 
sources: the database of the IEA, project funders3, and the network of the IEA. Some data 
are collected from multiple resources for cross-checking. While running the model, we used 
as much as possible the data collected from the IEA database.   

We then processed these primary data and assembled them in pre-designed templates for 
the model to read. We call these data secondary. Illustrated in the first part of Table 1 is a 
part of the primary data such as energy prices, carbon prices and power technology data. 
The second part of the table shows the secondary data, processed for modeling.  As listed in 
the first row of the secondary data table, the plant types indicate corresponding 
technologies. The term “Coal Power” refers to an existing power plant that will generate cash 
flow without considerable capital investment, while “new” means a new power plant that will 
replace the old one upon new investment (or upon exercise of the option). If the parameter is 
“new”, the project lifetime will be the economic lifetime of the new power plant: 25 years as 
indicated in the second row. As illustrated, CO2 emission factors vary between technologies, 
ranging from 56 tCO2/MWh for gas power to 95tCO2/MWh for coal power.  

 

Figure 2  Structure of the database in Module 1 

Economical & financial data Technological data Environmental data

Economic lifetime of power plants Coal plant specifications CO2 capture data

Coal price Gas plant specifications CO2 transport data

Average variable O&M costs Coal biomass cofiring CO2 emission factor UK
Gas price assumptions Construction yrs & capital shares
Estimated costs of biofuel Data for heat rate improvement
WEO data on capital cost World nuclear power
Wood resource price Hybrid plants

WEO Tech data
WEO energy efficiency data
Plant construction schedule
Registered UK plants

    Energy conversion factors

                  Module 2  

 

                                                           
3   E. ON UK, RWE npower of UK and Enel of Italy 
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Table 1 Examples of primary data and secondary data 

 

 

 

 

Primary data source: World Energy Model of the IEA (2005a) 

 

Project Specific Assumptions
Base case - 
green field

Option 1 - New 
Coal

Option 2 - New 
Gas

Option 3 - 
Existing Coal

Option 4 - 
Existing Gas

Option 5 - Add 
CCS to Coal

Option 6 - Add 
CCS to Gas

Plant duration based on existing plant or new build? 1 2 2 2 2 1 1

Project Lifetime (Years) 0 40 25 40 25 40 25
Capacity Retrofitted (MWe) 472             1,350                1,350                1,350                 1,350                1,086                1,208                
Capital Cost ($/kW) 0 1,320                589                   1,320.00            589.00              810.00               430.00               
Construction Period (No. years of capital payment) 0 3 2 3 2 2 2
Capacity/Load Factor 85% 85% 85% 85% 85% 85% 85%
Average annual efficiency of generation 33.0% 46.0% 57.0% 46.0% 57.0% 37.0% 51.0%

% of coal in fuel mix 100% 100% 0% 100% 0% 100% 0%
% of oil in fuel mix 0% 0% 0% 0%

% of gas in fuel mix 0% 100% 0% 100% 0% 100%
% of biomass in fuel mix 0% 0% 0% 0%
% of nuclear in fuel mix 0% 0% 0% 0%

% of other in fuel mix 0% 0% 0% 0%
CO2 Emissions Factor for Fuel (tCO2/TJ) 95              95                     56                     95                     56                     95                     56                     
Fixed Op&Maint ($ /kW-Yr) 30.00          46.8                  46.8                  46.8                   46.8                  71.50                71.50                
Unit Variable Op&Maint (excluding fuel cost) ($/MWh) 3.00            -                   -                    -                    -                    7.40                  3.54                  

Calculated Operating Data
Base case - 
green field

Option 1 - New 
Coal

Option 2 - New 
Gas

Option 3 - 
Existing Coal

Option 4 - 
Existing Gas

Option 5 - Add 
CCS to Coal

Option 6 - Add 
CCS to Gas

Annual Generation (MWh/yr) 3,515,679   10,052,100        10,052,100        10,052,100         10,052,100        8,085,385          8,993,984          
CO2 Emissions Rate from Generation (tCO2/MWh) 1.03            0.74                  0.35                  0.74                   0.35                  0.13                  0.06                  
Annual CO2 Emission from Generation (tCO2/Yr) 3,628,181   7,442,050          3,561,618          7,442,050          3,561,618          1,079,097          516,435             
Fuel Consumption (TJ/Yr) 38,353        78,669              63,487              78,669               63,487              78,669               63,487               
Total Capital Cost ($) -             1,664,240,721   768,271,473      1,664,240,721    768,271,473      849,822,693      501,837,590      
Deterministic NPV using mean forecast values for var -             105,377,700-     369,364            301,146,972      300,307,777      415,185,043-      415,185,043-      

New New New New Retrofit RetrofitRetrofit New New New New Retrofit Retrofit

 

Secondary data: Calculated from the IEA’s model MINUIT (2006) 

 

4. Module Two: Parameter calculation and uncertainty modeling 

In this module we use collected primary data and processed secondary to calculate various 
parameters and uncertainty modeling required for running the model. In this document, we 
do not present in detail all the parameter calculations that are necessary for project 
economic and financial evaluation. Rather, we only present the calculations and modeling of 
several key parameters, including price uncertainty, correlation of energy price and CO2 
price. 

 4.1 Modeling price uncertainties 

Figure 3 illustrates the modeling of uncertain fuel prices. The left half of the curve represents 
the historical price data, while the curve’s right half demonstrates how prices evolve 
stochastically over time during the Monte Carlo simulations4.  

                                                           
4  Monte Carlo methods are a widely used class of computational algorithms for simulating the behavior of 
various physical and mathematical systems, and for other computations. They are distinguished from other 
simulation methods (such as molecular dynamics) by being stochastic, that is nondeterministic in some manner - 

Stea m  boile r - Coa l fire d 2000 2001 2002 2003 2004 2005 2006
Capital Cost ($/kW ) + FGD 1100 1089 1078 1067 1057 1046 1036
Maintenance Costs  ($/kW ) 23 23 23 23 23 23 23
Variable O & M (m ills/kW h) 3.3 3.3 3.3 3.3 3.3 3.3 3.3
Fuel Cost ($US/toe) 85 85 80 73 66 65 65
Fuel Cost (mills  /kW h) 18 18 17 15 14 14 14

Primary data 

Project assumptions and calculated operating data 
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Figure 3 Modeling energy price volatilities 

 
 

 

 

 

 

 

 

 

 

 

The IEA’s model is capable of modeling almost any stochastic process. In the current 
context, we have chosen to model energy and carbon prices using Geometric Brownian 
Motion (GBM). In a GBM process, energy price [P(t)] is modeled by the following equation { 
Dixit A. K. and Pindyck R.S. (1994) pp 71-72, } : 
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Where:  µ is the expected growth rate of P(t) between ti-1 and ti. if y(ti) is the assumed 
price function that revolves around a certain level in ti. (long-run marginal cost of 
production or reduction), then, using the historical data of y(t), we can calculate 
µ  with the following model: 
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usually by using random numbers (or, more often, pseudo-random numbers) - as opposed to deterministic 
algorithms. Because of the repetition of algorithms and the large number of calculations involved, Monte Carlo is 
a method suited to calculation using a computer, utilizing many techniques of computer simulation. 
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σ  is the annual expected volatility of the price expressed as a percentage 
change. Similarly, using the historical data of y(t), we can calculate σ with the 
following equation5:    
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It is the standard deviation of the yearly variances of the historical price data.  
Finally, B(t) is a stochastic (randomised) function generated by the computer.  

P(0) = P0 means that we know the price value at the beginning of the planning 
period. ε[P(t)] is the expected value of price at time t. V[P(t)] is the variance of 
the price at time t. 

The above model is dynamic, stochastic, and log-normal, ensuring a simulated distribution 
above zero for forecasted prices for energy and carbon. 

In using these parameters, we aim to capture the long-term price drifts rather than short-term 
volatility, as investment strategy considers long-term price changes, rather than price spikes 
over a short period. In the current IEA model, we set the annual price volatilities to 1.8% for 
coal and 7.75% for the prices of other fuels and CO2.  The standard deviation of price 
distribution under a random walk process evolves as the square root of time.  We chose this 
level of annual volatility to provide a mid- to long-term standard deviation in prices after 15 
years of ±7% for coal and ±30% for oil and gas, approximating the range between the IEA’s 
high and low price scenarios indicated in IEA (2005b).  Assuming that gas prices drive 
electricity prices, we use the same volatility for electricity. For consistency, we take this 
same volatility for carbon price. 

4.2 Modeling carbon price jump 

To complement the simulation of long-term carbon price drifts, we simulate possible carbon 
price shocks to represent policy-related events. In our modeling, we can simulate a 
symmetrical jump in carbon prices, either positive or negative, with an equal probability of 
being anywhere within the range.  Both the size of the jump and the year in which the jump 
occurs can be varied. In our basic case studies, we have set the size of the jump to be 100% 
(i.e. the price after the jump could be anywhere in the range of almost zero to double the 
previous price before the jump).  The year of the jump is taken to be year 11, giving 10 years 
of ‘normal’ cash flow before the jump. See Figure 4. 

The mathematics function used in the model for the percentage of carbon price jump 
appears in a simplified version as follows: 

%]1)(2[)(% JtRtPcj ×−×=
 

Where:  

                                                           
5  This parameter can be calculated in several ways; using the projected future data, one also arrives 
at this parameter. 
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Pcj%(t) is the volume of the carbon price jump in percentage, calculated randomly by 
the model according to the user’s expectation. It has a value between -100% and 
100%. 

R (t) is a random function which generates a random number between 0 and 1 with 
uniform probability distribution in between. 

J% is the size of the carbon price jump expected by the user. It has a value between 
0% and 100%.  In our model, we set J% = 100%   

 

Figure 4  Modeling uncertain CO2 price jump 

 

 

 

 

 

 

 

 

 

Adding the above additional carbon price jump scale to the carbon price function, the new 
carbon prices Pcjp(t), as shown in the following formula, will randomly change between 0% 
and 200% of the carbon price prior to the jump Pc(t): 

 
}%]1)(2[1{)(})(1{)()( % JtRtPtPtPtP ccjccjp ×−×+×=+×=

 

Where: Pcjp(t) is the carbon price at year t with the jump effect, and Pc(t) is the carbon price 
without the jump effect. Other parameters are the same as those of the previous formula. 

4.3 Modeling price correlations 

In developed energy markets around the world, prices for various fuels are highly correlated 
to each other. In most OECD countries, electricity prices mirror gas prices, as demonstrated 
in Figure 5’s illustration of price correlation in 14 OECD nations6. The figure’s three graphs 
track the quarterly electricity prices and gas prices between 2003 and 2005 within Finland, 
the UK and the average data of the 14 OECD countries. We chose Finland and the UK as 
examples of the lowest and highest correlation coefficients between gas prices and 
electricity prices. As indicated in the Figure’s first two graphs, each marking the same time 

                                                           
6  Finland, France, Greece, Hungary, Ireland, Mexico, New Zealand, Poland, Portugal, Slovak 
Republic, Switzerland, Turkey, United Kingdom and United States. There is a data shortage for other 
OECD countries. 
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period, the gas prices and electricity prices in Finland change independently with a 
correlation coefficient of 0.33, while the electricity prices closely mimic gas prices in the UK 
with a correlation coefficient of 0.989. Across the OECD, average electricity prices followed 
average gas prices, with a correlation factor of 0.763.  

We used a simple model to calculate the correlation coefficients. Let Pg and Pe represent the 
gas and electricity prices in two arrays, namely: 

andppppP gngtggg }.......,,{ 21=
 

}.......,,{ 21 eneteee ppppP =
 

Then, the correlation coefficient can be calculated as follows: 
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σ  and e

σ  are the standard deviations of the arrays of Pg and Pe respectively. g
µ  and e

µ  

are the mean values of the arrays of Pg and Pe.  

Applying the above methodology to the energy and carbon price arrays, we calculated the 
average correlation coefficients in the OECD, as appearing in Figure 5. Note that the 
correlation factors of oil prices to the electricity, gas and carbon prices are calculated from 
the national average data of Italy, because Italy is the only country in the OECD using 
significant amounts of oil for power generation.  

Table 2 Correlation coefficients 

Natural gas price CO2 price Oil price 

 
Electricity 

price OECD Used OECD Used Not used 
Electricity 
price 1 0.76 0.99 0.37 0.37 0.73 

Gas price  1 1 0.48 0.48 0.21 

CO2 price    1 1 0.87 

Oil prices         
 

1 

Note: OECD – calculated from the historical data of the OECD; Used – the actual data used in the 
model. Oil price data has not yet been used as we made no case study on oil power. 

The correlation coefficients shown in the above-mentioned figure are calculated on the basis 
of the historical and short-term (three-year) data. This figure in the UK was very high, 
approaching to 1, while it was low in Finland, only 0.33. The reason is that in UK gas power 
generation is dominant while in Finland (together with Sweden), nuclear power and hydro 
power are dominant. To better simulate the price correlation relationship in long-term 
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planning, we actually revised the correlation coefficients to a higher degree. As such, 
assuming the electricity prices will closely follow the gas prices during the next 25 years, we 
set the correlation coefficient in our model at 0.99 rather than at 0.76. See Table 2.  
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Figure 5 Correlation coefficients of electricity and gas prices 2003-2005 
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5. Module Three: Calculating Deterministic NPV 

In a traditional project assessment, evaluation of a project’s costs and expected gross 
margin or profits often involves a deterministic analysis, which fixes and discounts future 
cash flow to calculate a project’s present values. Net present values (NPVs) or levelised 
costs per unit of output are the key criteria for assessing a project’s financial viability. The 
deterministic method assumes full knowledge of each central variable, including future 
energy prices and future carbon trading prices, and discounts the future cash flow by the 
weighted average cost of capital (WACC) of a firm. In discounted cash flow (DCF) analysis, 
if the project revenue value is higher than the costs of the project investment and operations, 
the project may be ripe for investment. A mathematics function below shows the examples of 
the modeling results from Module 3. A more detailed description of how to calculate DCF, 
WACC and complete the DCF analysis can be found in ADB (2002).  
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Where:  

C0 is the unit construction costs; 

Pc is the carbon price. Changing with a yearly growth rate, its yearly volatility is zero; 

C(Pc)t is the cash in-flow of the project at year t. It is the function of Pc. 

With the above model, we calculated deterministic NPVs for various technologies. While 
doing so, we set the carbon price to change from USD 0/tCO2 to USD 100/tCO2. Because 
NPVs are functions of carbon prices and different technologies will have different responses 
to carbon prices, we are able to find the breakeven points of NPVs among different 
technologies. These points are critical because an investor may switch from investing in one 
technology to another if the carbon price is beyond or below that critical point. Figure 6 
shows a part of our modeling results in Module 3. It demonstrates the change of NPVs of 
four technologies along with the changing CO2 prices: new coal power, new gas power, 
adding CCS to a coal power plant, and adding CCS to a gas power plant. If carbon price is 
low, a power investor prefers to invest in a new coal power plant because the NPV of the 
new coal power plant is higher than any other technologies. However, with the growth of 
carbon price, the NPV of the new coal power plant decreases accordingly. The breakeven 
point of carbon price for the NPVs of a new coal plant and a new gas plant is about USD 
33/tCO2. If carbon price is beyond this point, a power investor would be better off if he 
invested in a new gas power plant. If carbon price reaches USD 39/tCO2 and USD 60/tCO2, 
a power investor will consider the installation of CCS technologies to a coal power plant and 
a gas power plant respectively.      

It should be stressed again that the above analysis is on the basis of DCF methodology. The 
nature of price change in a stochastic way is not incorporated in the calculation. A DCF 
analysis incorporates an aspect of project risk evaluation simply by setting higher discount 
rates. This method is best suited to inform the investment decisions of a mature company 
operating in a stable environment, one that enables the semi-exact forecasting of the next 
year’s cash flows. Such certainty may be difficult to secure in a dynamic market or in the 
period of a new power generation technology’s launch, when uncertainties about the raw 
materials, primary energy prices and CO2 trading prices confound a determination of 
potential revenue.  In any case, the blunt use of a single parameter (discount rate) to 



© OECD/IEA 2007   17 

represent many different sources of risk exacerbates the difficulty of choosing an appropriate 
discount rate, particularly in novel situations where risk premiums are not well established.  

Most importantly, the DCF does not account for the flexibility that investors must often select 
when making investments. For example, a new power plant with carbon capture and storage 
may not be cost-effective under current economic and technical conditions. However, as 
these circumstances change, the project may become cost-effective. The DCF analysis may 
close this project opportunity, whereas a real options method may steer the project 
developer to postpone the investment, while keeping the option alive. For the purposes of 
policy analysis, ROA is particularly useful, as the different elements of risk can be identified 
and modeled separately, and investors’ investment flexibility can also be modeled.   

 

Figure 6 Modeling results from Module 3 

 

 

 

 

 

 

 

 

 

 

6. Module Four: Real Options Analysis 

Module 4 of the IEA’s real options analysis (ROA) model consists of two key elements: 
scenarios and options. Figure 7 shows the relationship between the scenarios and the 
options. A scenario shown in circles in the figure describes a particular mode of operation of 
a technology. For example, a power plant performance characteristics before and after 
investment to improve energy efficiency can be considered as two distinct operational 
scenarios. Corresponding to a particular mode of operation, a cash-flow forecast for each 
period characterizes each scenario. Underlying this cash-flow forecast is a spreadsheet 
model that incorporates the relationships and assumptions relevant to a given mode of 
operation. As a scenario’s cash flow usually depends on the relationship of different 
variables, some of which are stochastic and random forecasts, scenarios’ future cash flows 
can therefore be uncertain. Traditional NPV analysis can always be regarded as a project’s 
single scenario cash flow without uncertain forecasts of costs or prices. 

An option defines the opportunity of switching irreversibly from one scenario to another. In 
Figure 7, the arrows represent options, meaning that for all the years during which an option 
is active, one can switch scenarios. An option may be available only during specific years or 
throughout the entire lifetime of a project. The action of switching scenarios is known as 
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exercising the option or, in practical terms, investing in the project. Therefore, this exercise 
generally entails a cost, often investment capital itself.  

An option always has a source scenario and at least one target scenario. A source scenario 
can be either an existing project such as a coal-fired power plant which is generating cash 
flow without additional capital investment, or a green field on which a new power plant can 
be built. A target scenario can be either the existing coal power plant with improved energy 
efficiency or a new power plant such as CCGT or clean coal technology. A target scenario 
can also serve as the source scenario for another target scenario. For example, in Figure 7 
Scenario D-1 is both a target scenario of Scenario A and the source scenario of Scenario D-
2. While the project is operating under the source scenario and if the option is active, the 
option may be exercised, switching the operating scenario to the target scenario. The IEA’s 
model monitors uncertainty surrounding an uncertain forecast to determining circumstances 
under which it is optimal to exercise the options for each year during the whole planning 
period. The model delivers a sequence of optimal exercise rules that maximises the 
investment value of the project regardless of the uncertainty’s resolution over time. 

Assuming the source scenario is the current scenario, the model will determine for each 
active year whether it is optimal to switch. Optimization of the exercise decision also 
accounts for all future exercise opportunities and, in more complex models, the presence of 
other options. In the model one may allow an option to aim for more than one target 
scenario. In this case, upon option exercise, the project will randomly switch to one of the 
target scenarios according to a set of pre-defined probabilities or switch within a set of 
predefined probabilities. 

With the features described above, the model allows one to quantify and optimize 
investment opportunities in different manners and categories. These include: 

a. Optionless models. The model is useful in the valuation of simple, single scenario 
models as it extends traditional discounted cash-flow (DCF) analysis by incorporating 
the effects of uncertainty. The model provides multiple risk measures including 
variance, value at risk, percentile analysis and value cumulative distribution function 
(CDF). By comparing the NPVs of the technologies under two studies, i.e. “with” and 
“without” setting the price variable uncertainty, one can estimate the risk premiums of 
the project.  

b. Basic option models. This category encompasses most models in current real 
options practice where a key strategic decision is to be made during the life of a 
project that would move a project from one baseline scenario to one single post-
exercise scenario.  

c. Multiple options. The basic option model can also be extended by incorporating many 
options. As such, multiple options with the same source scenario may coexist. 
Eventually, only one of such options may be exercised. Recall that investments in 
power technologies are irreversible, meaning that once the capital is invested it 
becomes a sunk cost. When a firm makes irreversible investment, it exercises or kills 
all its other options to invest in any other technologies. This lost option value is an 
opportunity cost that should be included when calculating the investment’s cost. 
Exercising a single option may lead to any one, but only one, of the option’s target 
scenarios.  

d. Multiple options with allocated probabilities. We can also specify a probability 
distribution that indicates the likelihood of each of the target scenarios. This modeling 
approach is useful in scenario analyses. For instance, if we want to model the 
influences of different CO2 prices under different probabilities on the same 
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technology, we can simply duplicate the target scenario data to form the other target 
scenario data, change the CO2 price, set both of the target scenarios, allocate a 
different probability to each of the target scenarios, and run the model. Note that the 
sum of the probabilities should always be equal to one.  

e. Nested (compound options). By compound options we refer to the situation where a 
strategic option becomes available only upon prior exercise of a different option. This 
kind of analysis often arises in applications with management strategies composed of 
many sequential steps. The IEA model uses a nested approach to model the retrofit 
of carbon capture and storage to existing coal and gas power plants. 

 

Figure 7  Model structure of Real Options 

 Note: Clean coal stands for clean coal power technologies  

 

Each appearing in Figure 7, these model structures may be combined into a larger model. 
For example, we craft a nested option model with multiple options available for a given 
scenario or build multi-target nested options.  

The above scenarios, options and their related uncertain prices are modeled with 
mathematical functions and supported by computer software programming. The following 
paragraphs present these functions and programming in more detail. 
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6.1 Dynamic stochastic analysis method 

A stochastic analysis method uses Monte Carlo simulation to incorporate the estimations of 
uncertainties into the model variables. In our model, we present input data such as primary 
randomized energy prices, electricity prices and carbon trading prices with some statistical 
distribution rather than fixed and known price points. As a result, the IEA’s model calculates 
stochastic project NPVs. The following formula is used in Module 4 to calculate the project 
NPV: 
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Where:  

C0 is the unit construction costs; 

Pc and Pe are the carbon prices and energy prices. They change stochastically in the 
model; 

C(Stochastic Pc & Pe)t is the cash in-flow of the project at year t. It is the function of 
Pc and Pe. 

As shown in the above mathematical formulas, the NPVs in Module 4 are a function of the 
fluctuating carbon price and electricity price. Figure 10 illustrates examples of Module 4’s 
modeling results. 

We use stochastic analysis to assess how variations in price affect project profitability, 
selecting equations describing variations in price that leave unchanged the expected mean 
price – within the chosen equations increases in price are as probable as decreases in price. 
If variations in price are small, the project valuation will return results similar to that of the 
DCF valuation, since average prices are unaffected. However, as variations in price become 
larger, the project valuation can change if a project’s gross margin is a non-linear function of 
price.   

Stochastic analysis is particularly useful when assessing the value of operational flexibility, 
as in the capacity to run a plant during favourable price conditions and extinguish operations 
during adverse price conditions.  In an environment of fluctuating prices, this operational 
flexibility increase overall plant profitability, relative to a static DCF analysis.  For further 
detail on this dynamic, see Blyth and Yang (2006). 

6.2 Real option optimization method in this study 

Optimal timing under uncertainty can manifest itself in two ways. First, consider projects that 
appear not to be cost-effective (i.e. have a negative NPV when measured using a standard 
DCF approach). A project valuation that does not account for price uncertainty produces a 
decision never to invest in the technology. However, following resolution of these 
uncertainties, this same investment opportunity may actually be cost-effective. In this case, 
the effect of optimal timing would be not to forgo the project opportunity. 

Conversely, if an investor considers a power project that returns a positive NPV following a 
DCF assessment, standard investment wisdom would compel an immediate investment. 
However, a real options analysis that accounts for price uncertainty might foretell the earning 
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of greater profits by waiting for more optimal price conditions. In this case, the effect of 
optimal timing would be to delay the investment, relative to an assessment ignoring price 
uncertainty. 

Timing of investment and choice of technology are of principal interest to policy-makers, 
particularly those governing the power sector, where investment is crucial to balancing 
supply and demand for electricity.  Changes in the timing of investment could therefore 
strongly influence power prices. The IEA’s model may inform the strategy of investors and 
policy-makers alike, given the model’s capacity to derive an optimal investment rule that 
accounts for the uncertainties in costs and revenues, as well as the flexibility of investment 
timing.  

The IEA’s model is structured as a “decision tree”, and the real option optimization compels 
a search of the best time to invest and calculates investment risk premiums from the top to 
the bottom of the tree. At time t, the model will look at the NPV of the project taking into 
account wide likelihoods of carbon and energy price volatilities under two scenarios: either 
invest now or hold on the investment until next period. The model will compare all the NPVs 
at all the time periods under the two scenarios, and tell the best time of investments. Figure 
8 illustrates the methodology of such a modeling operation. We divide time up into discrete 
periods of length ∆t, and assume that in each period NPV (X as in the figure) either moves 
up or down by an amount h. Let the probability that it moves up be p, and the probability that 
it moves down be q=1-p. The figure shows the possible values of NPVs (X, X+h, X+2h, 
X+3h, X-h, X-2h, and X-3h) in each of three periods (t=1, t=2, and t=3) with different 
probabilities (p, q, p2, 2pq, q2, p3, 3p2q, 3pq2 and q3) assuming that it begins at the point X. 
More detailed descriptions about dynamic optimisation of the process will be given later in 
this document.    

Figure 8 Stochastic value and optimization tree of ROA 

 

Source: Adapted from Dixit & Pindyck (1994) 

To better demonstrate the optimization process, we start with a case study of switching an 
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power plant status as a Base Scenario (BS). One of the options available to BS is to switch 
the power plant to a CCGT, which we call the target scenario (TS)7. We assumed that the 
project investment would take place within a period of t years { t=1, . . . , T}. The capital 
investment in CCGT (or the cost of exercising the option) is K. We denoted CB(t) and CT(t) 

cash flows corresponding to BS and TS at year t respectively. Within our discount curve, 
d(t1, t2) denotes the discount factor applied at time t1 to cash flows occurring at time t2. By 
definition, we have d(t1, t1) = 1. 

The optimal exercise policy is derived by estimating the value of exercise versus the 
continuation value using top-down dynamic programming techniques (Dixit and Pindyck 
1994).  We begin solving the problem at the latest year and work back to the beginning year.  
For the latest year in our project, the policy problem in the model is to 

)()()()(, TxTBTTT KCCVifExercise >−=
 

)()()()(, TxTBTTT KCCVifexercisenotDo ≤−=
 

Correspondingly, we have the optimization relationship at year T: 

})(;{max )()()(
*

)( TxTBTTT KCCV +=
 

In any year t (0 < t < T), the random value of exercising the target option is the present value 
of the target scenario’s cash flow, that is: 

∑
=

=
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The continuation value, that is, the value of the project if one chooses not to exercise the 
option in period t, is given by: 

*
)1()()( )1,( +++= ttB

cont
t VttdCV

 

Where V*
(t+1) is the summed cash flows of the base scenario project under the optimal 

conditions during year t+1, t+2, … T-1, T, discounted back to year t+1. 

Under ROA, the optimal exercise (or investment) timing is derived by comparing the value of 
exercise versus the expected value of continuation of the project, which is highly dependent 
on future uncertain information such as the stochastic prices of carbon, energy and 
electricity. We denote the expected value as E[V*

(t+1)]. At any time t, the computer model 
simulates the random prices and conveys information to t about the way manner in which 
uncertainty has been resolved, along with the provision of future profit outlooks for the 
different scenarios.  

                                                           
7 Other options include (1) switching to biomass coal co-firing; (2) improving the heat rate; 
(3) expanding the lifetime of the power plant; (4) early retirement of the power plant; (5) completely re-
building a new coal-fired power plant or gas power plant, etc. 
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We denote: 
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At any time t, the optimal exercise (or investment) policy will adhere to the following rules: 

)()( ][, txt KVEifExercise >
 

)()( ][, txt KVEifexercisenotDo ≤
 

Correspondingly, the optimization relationship between the expected values of the existing 
project (or none for a green field) and future potential projects appears as:  
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The above optimization relationship is essential to our model’s simulation of the new 
investment rule under ROA. The rule states: “In year t, the investor should not invest in any 
new project (wait for at least one year) unless the expected value of the discounted future 
cash flows of the new plant (E[Vex

(t)]) is greater than the expected cash flow of the existing 
plant in year t (E[C B(t)]) plus the expected discounted optimization value of the options of the 
project in year t+1 (E[d(t, t+1) V* (t+1)]) and expected capital costs (or investment cost) (E[K 

x(t)]).” If the option is not exercised in year t, the option holder will have two options in the 
next year: exercise it or wait for a better opportunity. Once the option holder exercises the 
option at t, future options close and the option holder receives the optional value of the 
project: V* (t) =  E[Vex

(t+1)]. The risk premium relates directly to the options of the project: the 
higher the uncertainty, the higher the project’s option value. Thus, more uncertain carbon 
and energy prices create higher option values for the project, or in other words, higher 
thresholds for new investment. In Blyth and Yang (2006), we demonstrate quantitatively how 
the uncertainties surrounding climate change and energy prices raise the threshold for 
investments in various power generation technologies.  

The above optimization process is multiple and dynamic, which will be carried out by a 
computer programme from T, via T-1, … t, t-1, .. until t=1. Figure 9 illustrates the 
optimization process. Though the previous example centres on a single target technology, 
the IEA’s model can optimize multiple options, calculating one NPV at year t (V(t)) for each of 
the technologies, comparing these values and choosing the largest one as V*

(t).   
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Figure 9 Real option optimization flow chart 

 

 

 

Figure 10 Optimization of future cash flows using Real Options  
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Figure 10 further demonstrates how the IEA model derives the rules of investment from the 
real options optimization. Starting at the end of the planning period, in each year, the model 
will calculate the NPVs for the projects, including the existing equipment and all potential 
new technologies. Note that the NPVs will have forms of random distribution due to the 
stochastic prices for energy and CO2. As exemplified by the red-colored distribution, each of 
the NPV distributions represent the optimal NPV as selected from a cluster of the NPVs. We 
use the mean NPV values to represent the NPVs of the projects. Accounting for all price 
volatility in each year of the investment planning period, the computer model generates 
optimal investment rules for each candidate technology for each year.  These investment 
rules then inform the Monte Carlo simulation, which runs forward from 2006 to determine the 
optimal date to switch from the existing technology to any new technology.  In this study, we 
particularly concentrate on the value of these investment rules produced by the model: the 
ROA’s investment rules typically exceed the normal DCF breakeven point by a margin which 
we interpret as an investment threshold further raised by uncertainty. 
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7. Computer software programming 

The IEA’s model uses a Real Option Calculator (ROC) Excel Add-in software programme 
also used by the Electric Power Research Institute (EPRI) for their real option analysis work. 
The ROC uses the Monte Carlo simulation tool and runs the optimization routines. When this 
study started, the software was commercially available from Onward Inc. (Onward 2004). As 
Onward’s product is no longer sold, other commercially available decision-support software 
programming could be used for similar analyses. 

8. Sensitivity analyses  

This study’s sensitivity analysis involved two methodologies for the range of variables. In the 
traditional methodology of project sensitivity analysis, the dependent variable is the project 
NPV. Independent variables generally appear as the project’s capital costs, operation and 
maintenance (O&M) costs, discount rate, and the time period of the project construction 
(ADB, 2002). In this study, we used this traditional methodology to analyze the sensitivity of 
two major variables: capital investment costs, and O&M cost.  

With another method, we also assessed the sensitivity of a random variable: the volatility of 
the carbon price. During the assessment, we used the expected threshold values of the 
stochastic NPVs, rather than the deterministic project NPVs, as the traditional methodology 
of sensitivity evaluation cannot capture the change of stochastic variables and thus is not 
applicable to such uncertainty analysis. The formulas used for our study’s sensitivity analysis 
are expressed as follows:  

%)
scenariobasetheunderNPV

scenariorevisedtheunderNPV
(NPVofySensitivit 1001(%) ×−=   

for the variables of capital investment and O&M cost; and 

%)
scenariobaselineunderthreadholdNPVAnnual

scenariorevisedtheunderthreadholdNPVAnnual
(changeThreshold 1001 ×−= for 

the variable of volatility of carbon prices. 

We followed the procedures listed in ADB (2002) when conducting the sensitivity study for 
the two variables, calculating first the NPVs for all options under the baseline scenario. 
Then, we set the capital investment costs and O&M costs to each increase by 10%, and 
again calculated the NPVs. Substituting the two calculated values in the first formula, we 
estimated the sensitivity of NPVs and calculated the sensitivity of carbon price volatility using 
the second formula.  

9. Conclusions  

Assessment of how carbon and energy prices affect project risk and investment strategy 
compels the development of new methodologies and models to quantify the influence of 
climate change policy and uncertain energy prices on energy sector investment. This paper 
describes the technical details of such a model developed by the IEA: Real Options Analysis 
approach. 

The methodology and modeling of Real Options Analysis is still developing. The IEA’s 
modeling methodology applies real options as a novel tool in policy analysis. This application 
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of real options enables modeling of individual risk factors, thus informing a comparison of the 
relative influence of uncertainty in CO2 price vs. fuel price. With such a tool, we can critically 
compare the effects of different policy designs, and compare the impact of climate change 
policy uncertainty with the impact of market uncertainty on power investment. More 
importantly, we model both the energy prices and carbon prices with stochastic variables 
and use nested modules to model multiple-stage investments, which is still a gap in the 
modeling the impact of climate change policy in power investment. 

The methodology and model presented in this paper have proven effective and applicable. 
We have applied this methodology and model in nine general case studies and three specific 
case studies. The research results of the case studies have been well accepted and 
acknowledged by the project funders that include three national governments of OECD 
countries and three power companies.  Details about these studies and result discussions 
appear in a separate paper. See Blyth and Yang (2006), and IEA (2007). 

References 

ADB (Asian Development Bank) (2002) Guidelines for the Financial Governance and 
Management of Investment Projects Financed by the Asian Development Bank, Asian 
Development Bank, January, Manila, Philippines. 

Blyth W. and Yang M. (2006) Impact of Climate Change Policy Uncertainty on Power 
Generation Investments, a working paper of the IEA for COP12, LTA/2006/01, Paris.   

Dixit & Pindyck (1994) Investment under Uncertainty, Princeton University Press, ISBN 0 
691 03410 9. 

IEA - International Energy Agency (2005a) Inquire 3 (IEA Energy Database), Paris, France.  

IEA - International Energy Agency (2005b) World Energy Outlook - Middle East and North 
Africa Insights. The International Energy Agency, ISBN 92-64-10949-8, Paris 

IEA - International Energy Agency (2007) Climate Policy Uncertainty and Investment Risk, a 
book to be published by the IEA in March 2007. 

Kuper G. H. and Soest D. P. (2006) Does Oil Price Uncertainty Affect Energy Use? Energy 
Journal, Vol 27, No. 1. pp 55-78. 

Myers, S.C (1977) The Determinants of Corporate Borrowing. Journal of Financial 
Economics 5 (1977): 147-175. 

Laurikka H. (2006) Option Value of Gasification Technology within an Emissions Trading 
Scheme. Energy Policy, 34, Issue 18, December. pp3916-3928. 

Laughton D., Hyndman R., Weaver A., Gillett N., Webster M., Allen M. and Koehler J. 
(2003). A Real Options Analysis of a GHG Sequestration Project. The paper is available 
from David Laughton at: david.laughton@ualberta.ca 

Marreco J. M. and Carpio L.G.T. (2006) Flexibility Valuation in the Brazilian Power System – 
A real options approach. Energy Policy, Vol 34, Issue 18. pp 3749-3756. 

Onward (2004) Real Options Calculator Excel Add-in Version 1.1, User’s Manual, Onward 
Incorporated 888 Villa St. Suite 300, Mountain View, CA 94041, USA. 



© OECD/IEA 2007   27 

Rothwell G. (2006) A Real Options Approach to Evaluating New Nuclear Power Plants. The 
Energy Journal; Vol 27, No1 pp 37-53. 

Sekar C. (2005). Carbon Dioxide Capture from Coal-Fired Power Plants: A Real Options 
Analysis, Massachusetts Institute of Technology, Laboratory for Energy and the 
Environment, 77 Massachusetts Avenue, Cambridge, MA 02139-4307, US. 

Siddiqui A. S., Marnay C. and Wiser R. H. (2007) Real Options Valuation of US Federal 
Renewable Energy Research, Development, Demonstration, and Development. Energy 
Policy, Vol 35, Issue 1, January, pp265-279. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Printed at the International Energy Agency, Paris  


