

KTH ROYAL INSTITUTE OF TECHNOLOGY

Innovation in District Heating and Energy Storage

Viktoria Martin, Ph.D.

Who's talking?

- Viktoria Martin, Professor in Energy Technology,
- Head of Division of Energy Systems at KTH-Royal Institute of Technology, Sweden
- · Area of research is:
 - related to technologies, thermal energy storage and heat driven heat pumping technology
 - related to systems, district energy systems, industrial energy systems, and decentralised applications related also to developing regions of the world.
- PhD Mech Eng., U of Florida (1998)
- MSc Chemical Eng, KTH (1993)
- You can reach me at <u>vmartin@kth.se</u>

	nceDirect	Journals & Books Q ⑦ Registe	r Sign in Brought to you by: KTH Bibliotoket
		Download PDF Share Export	Search ScienceDirect Q Advanced
he		Applied Energy Volume 92, April 2012, Pages 175-184	Recommended articles Controlling cyclic combustion timing v Applied Energy, Volume 92, 2012, pp. 133 Comore de POF View details ~
	th for system simulation nodeling of system compo	Decentralized cooling in district heating network: System simulation and parametric study	Ongoing commissioning of water-cool Applied Energy, Volume 92, 2012, pp. 90-108 Download PDF View details ~ Carbon emission reduction targeting t
	ondusions	Seksan Udoman ^a R. ¹⁰ , Chris Bales ¹⁰ , Andrew R. Martin ¹⁴ , Viktoria Martin ¹⁶ B Show more	Applied Energy, Volume 92, 2012, pp. 686 Download PDF View details ~
		https://doi.org/10.1016/j.apenergy.2011.10.009 Get rights and content	1 2 Next >
	<	Abstract	Citing articles (19)
		This paper presents system simulation and parametric study of the demonstration system of decentralized cooling in district heating	Article Metrics
		network. The monitoring results obtained from the demonstration	Citations Feedback 💭

Some introductory inspiration...

- Herleen District Heating network, Netherlands
 - Circular District Heating, using ground water filled mines for heating/cooling of buildings
 - Heated by geothermal energy

VETENSKAP OCH KONST

- When a building is cooled, it releases heat to be stored in the mining wells. When the building is heated, cold is charged into the store. A heat pump ensures the correct temperature.
- Enables storing excess energy (electricity) from wind and PV as heat, via the heat pump.
- Only work with established technologies, linking them together in a smart way.
- Kalundborg Industrial Symbiosis
 - Create loops of water, energy and material flows between industrial partners to demonstrate circular economy.
 - Minimize "outflows" from symbiosis, that is effluents...
- <u>Hamburg</u>: "..."re-municipalise" the local electricity and district heating networks, as proposed by grassroots initiative "Our Hamburg Our Grid". "
 - By 2030, get coal power out of DH
 - Biomass, waste incineration, solar
 - Air rade bunker transformed into a heat reservoir
 - Pumping hot salt far into the ground

District heating? Let's boil some water!

Image: www.euroheat.org

The evolvement of district heating over time ...

5th generation district heating?

- Smart Thermal Energy Network
- Early stage of development ... the same pipes provide heating AND cooling!
- Free-floating temperatures in the system, and close to the ground temperature for minimizing losses.
- Check out for example:

A starting point – renewable District Heating based on biomass.

Flue gas condensation

- Using the "return" flow on the district heating line, flue gas is cooled below the dew point.
- As water condenses (heat of condensation approximately 2500 kJ/kg) heat is released, and recovered back to the district heating net (pre-heating of return line).
- For "wet" fuel (biomass and waste) this may result in thermal efficiencies "above" 100%, based on the fuel's lower heating value (MJ/kg, calculated assuming combustion product water in gas form) ^(C).
- Flue gas condensation ALSO purifies the flue gas...

Image: <u>www.envibat.se</u>

One Swedish Example "Mälarenergi"

- Circulating Fluidized Bed Boiler allows for a mix in fuel: biomass and municipal waste ...
- Commissioned 2014
- 167 MW_{fuel}
- 50 MW_{el}
- Up to 30 MW heat recovered in Flue Gas Condensation

2021-11-30

ectogrid[™] – similar to the Herleen case...

• Nothing "new under the sun" – still, a recently trademarked concept:

Time to start "sharing" for a sustainable city!

- Distributing energy flows between neighbors, using the same network for heat and cold.
- Heat Pumps between each building and the grid.
- The buildings make "withdrawals and deposits of heat"
- The accumulative demand of all buildings are balanced. Energy is only "added" to the grid when needed
- Beyond technologies innovation in business models, ICT etc.

A closer look at energy storage

Why Energy Storage?

Energy is not a problem – solar energy intercepted by earth is more than 3 orders of magnitude higher than annual global energy demand!

There is a mis-match in time, place, and temperature!

What type of storage?

2019 RENEWABLES GLOBAL STATUS REPORT

From ISES webinar Feb 27, 2020

Storage of Thermal Energy in District Heating

• Hot water accumulators - state-of-the-art.

Image:

Baeuerle, Yvonne. (2017). Life Cycle Assessment TES Systems Using Recycled Steel Industry Waste for Concentrated Solar Power Plants. https://doi.org/10.13140/RG.2.2.26903.27043

and

www.veab.se

• Using the ground, for "seasonal" (or monthly) storage

Reversed flow function

The BHE

A double tube coaxial insulated BHE type that allows a direct contact with the borehole wall with ground water as a heat carrier

140 boreholes 150 m depth

Emmaboda Foundry Storing Industrial Surplus Heat at high temperature (60 C) during Summer

KTH kcreater och konst

TES enabling Industrial Surplus Heat for Societal Use, and absorbing surplus from wind/PV

Seasonal Storage of Solar Heat

Drake Landing Solar Community – schematic Layout

Thermal Energy Storage – Merging Concepts

• Using Phase Change Materials, below for Seasonal Storage:

Storage Capacity: 70-100 kWh/m³

PCM Thermal Energy Storage has potential where water or ground is NOT an option...

• Heat on "wheels" (or boat) instead of pipe-transferred heat - for longer distances

Concluding Remarks

• Many commercial, and pilot plants showing 4GDH concepts, as well as 5th Generation concepts.

- In 5th Generation, treat district heating AND cooling together, match temperature levels to actual demands, enable multiple sources and minimize losses.
- Storage of heat and cold, that is Thermal Energy Storage, is important for resource and cost efficient solutions, and for integrating the heating/cooling sector with fluctuating wind and PV technologies.
- Local conditions, including business landscape and policy, are crucial to consider for successful projects.

- <u>https://www.4dh.eu/about-4dh/4gdh-definition</u>
- Buffa et al, 2019, "5th generation district heating and cooling systems: A review of existing cases in Europe", Renewable and Sustainable Energy Reviews 104 (2019) pages 504–522 <u>https://doi.org/10.1016/j.rser.2018.12.059</u>
- <u>http://www.flexynets.eu/en/Home</u>
- Euroheat & Power: https://www.euroheat.org/

Thank you for your attention!