8th Annual EPRI-IEA Workshop

Challenges in Decarbonisation: Building a Resilient Net-Zero Future

Panel 1: Flexibility and Resiliency in Decarbonised Energy Systems

Jeffery Preece Senior Program Manager jpreece@epri.com

19 October 2021

www.epri.com © 2021 Electric Power Research Institute, Inc. All rights reserved.

Decarbonization Pathways Enabled by Innovation

~15-30 years

Decarbonization

Accelerate economy-wide, low-carbon solutions

- Electric sector decarbonization
- Transmission and grid flexibility: storage, demand, EVs
- Efficient electrification

Achieve a net-zero clean energy system

- Ubiquitous clean electricity: renewables, advanced nuclear, CCS
- Negative-emission technologies
- Low-carbon resources: hydrogen and related, low-carbon fuels, biofuels, and biogas

TECHNOLOGY from concept to commercialization

Notional timelines

3

Energy Transformation

Global Energy reliant on fossil fuels

Reference: https://www.iea.org/data-and-statistics/charts/global-primary-energy-demand-by-fuel-1925-2019

Global Role of CCUS

Energy Sector contributions to net zero

IEA Net Zero from Energy Sector CCS 15% of cumulative global emissions by 2070

IPCC Global Warming of 1.5°C Up to 300 Gt CO₂ stored cumulatively through 2050

References: International Energy Agency, Special Report on CCUS, Energy Technology Perspectives, 2020

IPCC Special Report on Global Warming of 1.5 °C, WG 1, 2019

CO₂ Capture on Coal and Natural Gas Power Generation

Coal Flue Gas ~12-15% CO₂

Nat. Gas Combined Cycle Flue Gas ~3-4% CO₂ Nat. Gas Allam Cycle >98% CO_{2 (anticipated)}

6

CO2 Capture Technologies for Coal and Natural Gas

www.epri.com

CO₂ Geologic Storage Options

- Saline formations
 - Largest capacities, most common
- Oil and gas fields
 - Depleted fields
 - Enhanced oil recovery (EOR)
 - Enhanced natural gas recovery
- Coal seams
- Enhanced coal bed methane
- Other
 - Basalts, shales, cavities

Geologic storage potential may be geographically constrained

Source: NETL <u>https://netl.doe.gov/coal/carbon-storage/faqs/carbon-storage-faqs</u>. (Accessed 10/3/21). Illustration of Pressure Effects on CO₂ (based upon image from CO2CRC). The blue numbers show the volume of CO₂ at each depth compared to a volume of 100 at the surface.

CCS Demonstration Project Commitment is 7-10 Years

9

Energy Storage Today

Can these technologies meet all energy storage needs?

Pumped Hydro

Lithium-Ion Batteries

9 TWh (93%) Size: GWhs, 8–12 hours

0.7 TWh (7%) Size: MWhs, 1–6 hours

Energy Storage Evolution

As intermittent renewables increase, the duration of energy storage needed also increases

As storage duration increases, different types of energy storage are needed

Different durations of energy storage will be required

Energy Storage Types

Electrochemical	Thermal	Mechanical	Chemical	
Reversible chemical reaction generates an electrical potential difference	Energy storage achieved by heating bulk media	Kinetic or potential (compression or gravitational)	Reaction produces product that can generate heat or power	

Different technologies for different purposes

Energy Storage

Industry Needs Questions from decision makers

What does it cost?

How does it operate in the field?

How will it perform?

What value does it provide?

Once installed, how do we best operate and maintain it?

Energy Storage Comparison

More		Li-Ion Batteries	Pumped Hydro	Thermal	Mechanical	Chemical
Favorable	Cost of Storage					
	Duration					
	Efficiency (AC-AC)					
Less Favorable	Environmental					
	Footprint					
	Inertia					
	Maturity					
	0&M					
	Response Time					
	Safety					
	Scalability					
	Startup Time					

No energy storage technology is one-size-fits-all

Beyond 2030

www.epri.com

Integration of Low-Carbon Energy Carriers

© 2021 Electric Power Research Institute, Inc. All rights reserved.

Hydrogen

Expanding the Energy Economy Hydrogen production costs

TECHNOLOGY

Decades of Effort from concept to

Notional timelines

Together...Shaping the Future of Energy™

