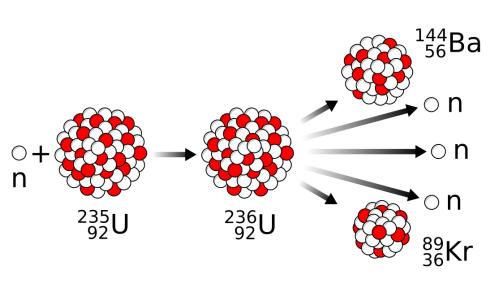


0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Basics of thermonuclear fusion

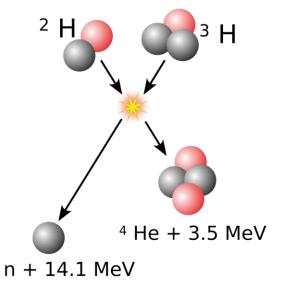
Karl Lackner*), Sina Fietz


CERT Special Session on Fusion

*) Emeritus

All contents, photos, texts and graphic arts are protected by copyright laws. Without explicit permission, they may not be changed, copied, multiplicated or published, neither as a whole nor in extracts (if not marked otherwise) © Sina Fietz & Karl Lackner / IPP

Energy gain through nuclear reactions


by liberating binding energy, which is maximum per nucleon for iron

[Source: Wikipedia]

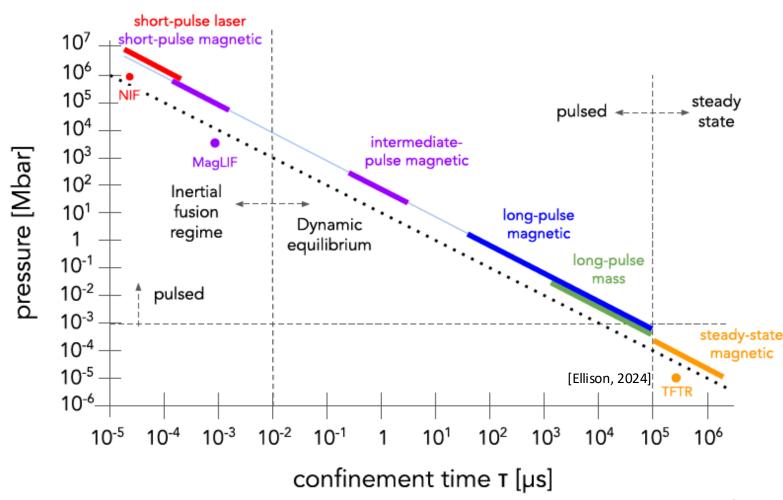
fission of heavy nuclei

- initiated by neutrons
- propagated by neutron avalange

[Source: Wikipedia]

fusion of light nuclei

- initiated by close approach of nuclei (against Coulomb repulsion)
- at high temperatures:
 (> 100 Million degrees = plasma)
- propagated as thermal burn


Requirements for positive energy balance

fusion energy > energy for heating: $n \cdot T \cdot \tau$ or $p \cdot \tau$ > min

time: cooling through radiation, heat conduction or: desintegration

biggest success in extreme corners

for start of burn, also minimum temperature needed

A prototypical (²H+³H, a.k.a. D+T) fusion power plant

 $^{2}H + ^{3}H (a.k.a. D + T) \rightarrow ^{4}He (3.5MeV) + n (14.1MeV) + 17.6MeV$

Blanket Magnet coils Plasma heating **Current drive Turbine** Generator [Source: MPI für Plasmaphysik, Karin Hirl]

Li D

⁴He trapped in Plasma - > (self-) heating

neutron deposited in blanket

energy for power production

particle for tritium breeding

 $n + {}^{6}Li \rightarrow {}^{4}He (2.1MeV) + T (2.7MeV)$

radiological aspects of D+T fusion reactor

final product of DT reaction is ⁴He, a stable nucleus

- no highly active fission products
- no transuranic atoms
- no runaway (cooling, fuel supply limited to couple of minutes)

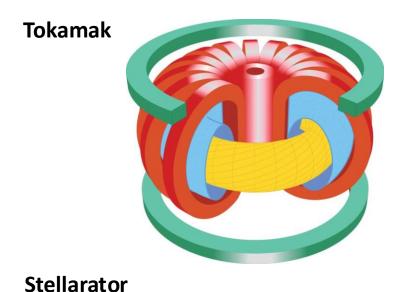
radioactive intermediate product tritium: beta radiator, 12.3 yrs half-life → inventory control fuel-cycle and blanket technology

activation of structures – issues of radioactivity and structural integrity → material development

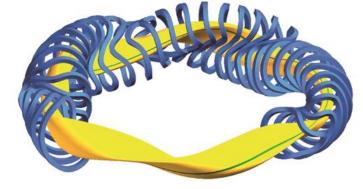
why not alternative – (aneutronic) - fuels?

 $D + {}^{3}He \rightarrow {}^{4}He (3.7MeV) + p (14.6MeV) + 18.3MeV$

$$p + {}^{11}B \rightarrow 3{}^{4}He + 8.7MeV$$

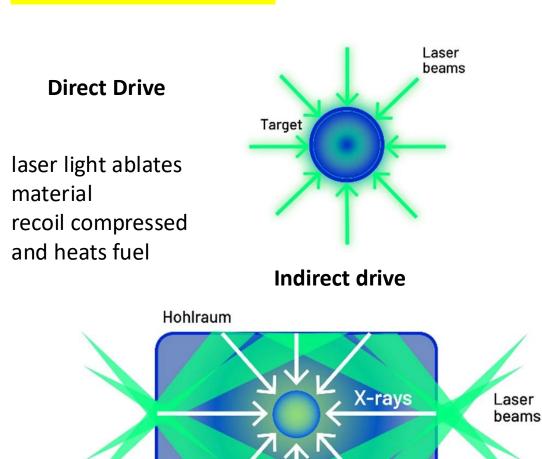

- desireable properties, but much higher (unrealistic?) demands on T and $nT\tau$
- no terrestrial supply of ³He (requires neutronic breeding via DD-fusion

Parameter\Reaction	D-T	D-He³	D-D	H-B ¹¹
optimum composition for maximum fusion power at given pressure (Te=Ti)	1:1	3:2	1:1	3:1
maximum fusion power density at constant pressure (rel.units)	1,00	0,02	0,04	0,0013
maximum ratio <σv>/T²	1,00	0.022	0.013	0,008
burn temperature[keV] optimized for power density at given pressure	15,00	50,00	20,00	140,00
minimum required nTτ for ignition (rel.units)	1	11	16	100


[Lackner]

Dominant approaches to thermonuclear fusion

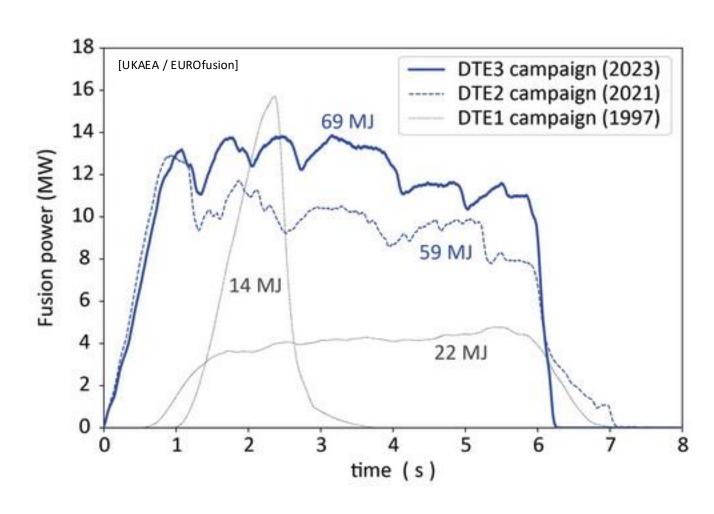
(quasi) steady-state magnetic confinement:



particles and field lines stay on closed "flux" surfaces

[Source: MPI für Plasmaphysik]

inertial confinement:


[Ditmire, 2023]

State of art and recent progress

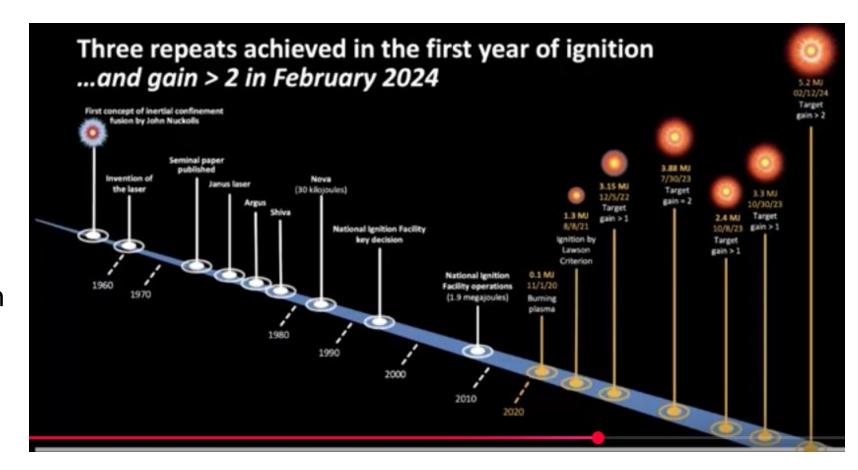
(quasi)steady-state magnetic confinement: - focus on developing reactor relevant solutions

thermonuclear burn only secondary aim (TFTR, JET)

- control of impurities: divertor concept and conversion of power into electromagnetic radiation (ASDEX-Upgrade, DIII-D, JET)
- quasisteady state operation with current drive and
- superconducting magnet (KSTAR, EAST, WEST)
- quasisteady operation without net plasma currents and superconducting magnets (Heliotron, W7-X)

Fusion Energy Production on JET

$$Q_{target} = P_{fusion}/P_{injected} = 0.35$$


State of art and recent progress

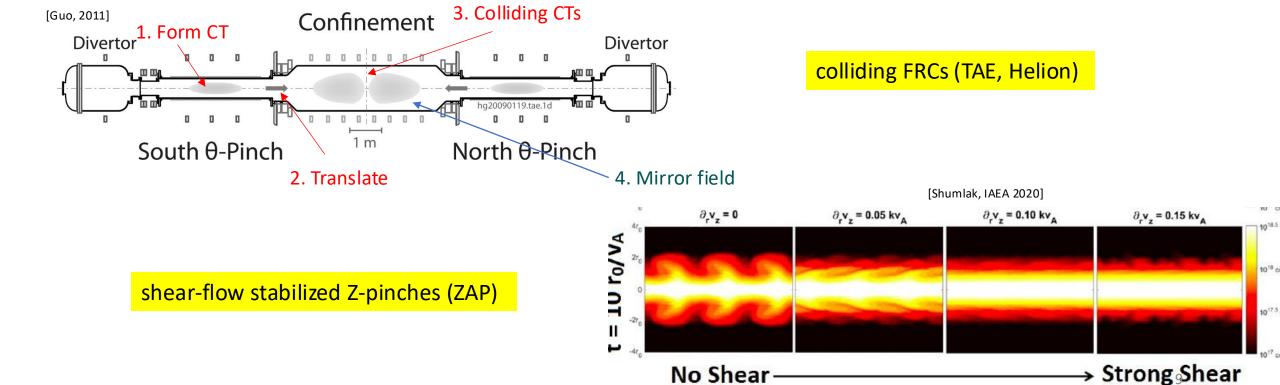
inertial confinement: achievement of ignition

(NIF's Mission Statement)

- Stockpile stewardship
- Discovery science
- Achieving ingnition and inertial confinemen fusion

Fusion Energy Production at NIFs

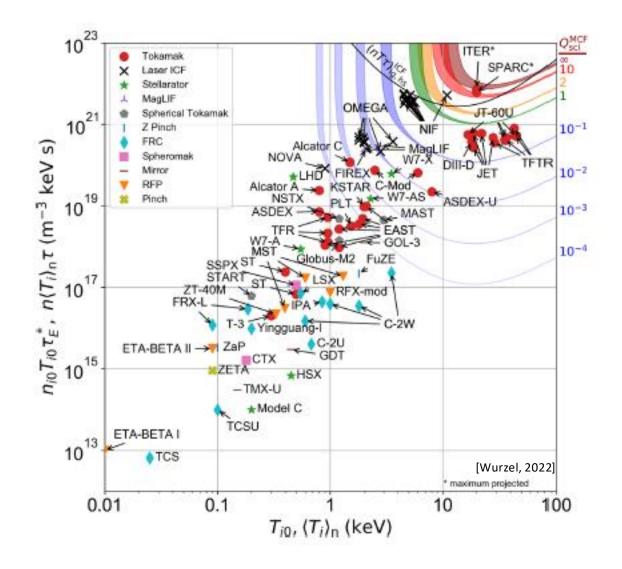
[Schlossberg, 2024]


$$G_{target} = E_{fusion} / E_{Laser} > 2$$

Start-ups and alternative approaches

tokamak or stellarator or NIFs-concept based approaches, taking a higher risk (Commonwealth Fusion, Tokamak Energy,..Proxima Fusion, Type One Energy.., Focused Energy,..):

- using less established technologies (high temperature/high-field superconductors)
- extrapolate into less explored areas of experimental data base (spherical tokamaks, turbulence-minimized stellarators)


reviving abolished concepts due to game-changing discoveries/technologies (intermediate pressure/lifetime regime)

A look back

❖ (Mainstream) Fusion Experience

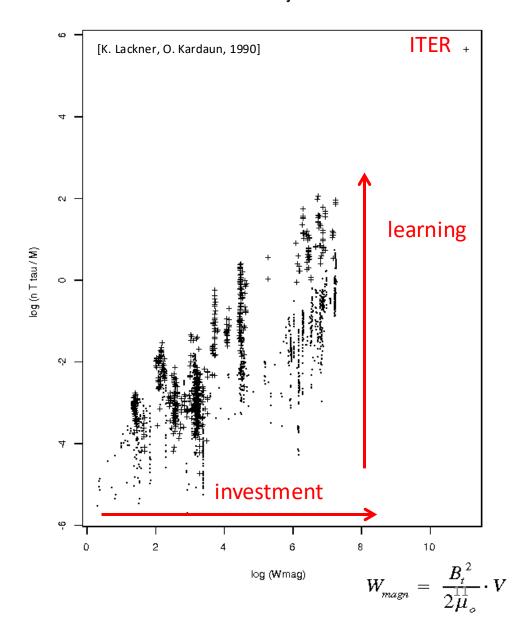
- fusion (even alone physics) is a multifaceted problem
 - 1. equilibrium /macroscopic stability
 - 2. thermal insulation (confinement)
 - 3. plasma wall interaction
 - first only viewed from plasmas: impurities
 - now from wall: survival
 - heating, confinement of α -particles
- can generally be addressed only sequentially
- stellarator and tokamaks are survivors and compromises: solutions - non-optimal - to all of them

Outlook: magnetic confinement

a clear default path to a reactor exists

based on scaling up existing physics to ITER

compatible with power plant technologies


- blanket technology
- fuel cycle
- power extraction
- magnet technology
- heating and current drive

material issues

- low activation strutural
- heat load handling

possible alternatives

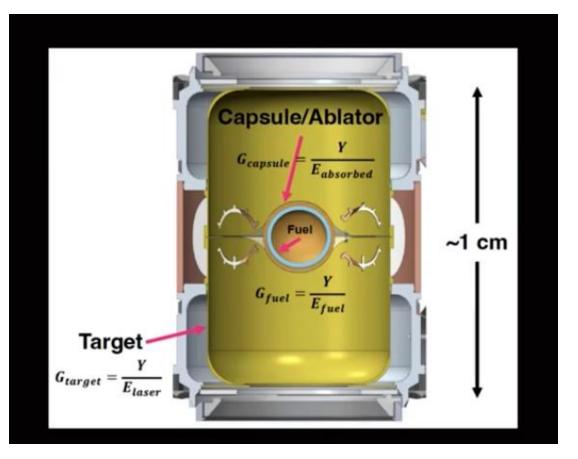
ITER L- mode and ELMy H - mode Dataset



Outlook: inertial confinement

milestone of target gain >1 has been reached

but probably qualitatively different path for reactor needs to be developend


- direct drive
- e.g. fast ignitor

[IAEA Fusion Physics Chapter 10: Mima]

power plant components only at level of conceptual ideas

economic driver (laser) development
economic target fabrication
material issues and fuel cycle (synergies with MCF)

[Schlossberg 2024]

$$G_{target} \sim 1.5$$
, $G_{capsule} \sim 12$, $G_{fuel} \sim 160$

Sources of figures:

Fission: https://de.m.wikipedia.org/wiki/Datei:Nuclear_fission_reaction.svg

Fusion: https://de.wikipedia.org/wiki/Kernfusion#/media/Datei:Deuterium-tritium_fusion.svg

Schlossberg, D: https://www.pppl.gov/events/2024/science-saturday-remarkable-story-fusion-ignition-national-ignition-facility-david (2024)

Ellison, C. L., et al. "Opportunities in Pulsed Magnetic Fusion Energy.", May. 2024. https://doi.org/10.2172/2346035

Ditmire, T. et al. https://doi.org/10.1007/s10894-023-00363-x

H. Y. Guo et al Phys. Plasmas 18, 056110 (2011); https://doi.org/10.1063/1.3574380

Shumlak, IAEA 2020,

https://conferences.iaea.org/event/214/contributions/17405/attachments/10483/15006/iaea2020_shumlak_poster_P4-952.pdf

Samuel E. Wurzel; Scott C. Hsu Physics of Plasmas 29, 062103 (2022)

K. Lackner, O. Kardaun, private communication, (1990)