

Modernising Energy Efficiency through Digitalisation

Webinar 6: Policy Guidance for Smart, Energy-Saving Consumer Devices

IEA Webinar, 2 June, 2020

- Introduction
- Webinar 6: Policy Guidance for Smart, Energy-Saving Consumer Devices
 - Steven Beletich is the principal of Beletich Associates, the Operating Agent for the Electronic Devices and Networks Annex (EDNA) of IEA's <u>Technology Collaboration Programme</u> (TCP) on <u>Energy Efficient End-Use</u> <u>Equipment</u> (4E)
- Questions and discussion

The presentation and the recording will be posted online, we will notify you when they are available on the IEA events page

How digitalisation can support & accelerate energy efficiency implementation:

- More effective policies and programmes
- Across end-use sectors (buildings, industry, transport)
- Supply side efficiency
- Systems efficiency including communities, cities and power systems (demand response, flexibility, optimised planning and operation)

https://www.iea.org/articles/energy-efficiencyand-digitalisation

Online community

Events

Workshops Webinars

IEA Modernising Energy Efficiency through Digitalisation

www.linkedin.com/groups/13700212/

Actionable policy guidance

Case studies, lessons learned

How to ask questions

led

Policy Guidance for

Smart, Energy-Saving Consumer Devices

Steven Beletich, Operating Agent for IEA-4E/EDNA IEA Webinar, 2 June 2020

With Thanks to

Vida Rozite and IEA colleagues

Guidehouse Inc, author of report for EDNA

https://www.iea-4e.org/document/448/policy-guidance-for-smart-energy-saving-consumer-devices

Contents

- Introduction
- Importance of devices
- Policy guidance for smart, energy-saving consumer devices

Introduction

IEA-4E / EDNA

Technical analysis & policy guidance

Operating Agent = Steven Beletich Annex of IEA-4E TCP

Austria, Australia, Canada, Denmark, European Comm, France, Japan, Korea, Netherlands, New Zealand, Sweden, Switzerland, UK, USA Efficiency of connected devices & systems

9

Energy Implications of Connectivity

Energy Savings

- Intelligent efficiency (IE)
- Demand flexibility (DF)

Energy Cost

Network standby

Intelligent Efficiency (IE)

Operation of a system of connected devices so that they respond to changing conditions of the external environment, in order to maximise energy savings

IE Example

IE Potential

Table 4.1.	Possible global	benefits of	digital	technology
------------	-----------------	-------------	---------	------------

Sector	Description	Possible benefits		
Buildings	Between 2017 and 2040, increased digitalisation of both commercial and residential buildings, including 1 billion connected buildings and 11 billion connected devices.	Up to 10% less energy used. Cumulative energy savings of 234 EJ.		
Transport	In urban transport, between 2015 and 2050 digitally enabled innovative technologies, including teleworking, massive shared mobility and autonomous vehicles, significantly reduce passenger kilometres travelled.	More than 50% lower CO ₂ emissions in 2050.		
Industry	Estimated cumulative impact from combining a range of digital technologies and advanced software applications.	Up to 30% energy savings.		
Flexible demand capacity	With increased policy action prioritising digital strategies and smart infrastructure, flexible demand capacity increases from 40 GW to 450 GW.	Ten times more flexible demand capacity by 2040.		

Sources: IEA (2019), Perspectives for the Clean Energy Transition: The Critical Role of Buildings, www.iea.org/publications/reports/PerspectivesfortheCleanEnergyTransition; IEA (2018b), World Energy Outlook 2018; IEA (2017b), Digitalisation and Energy; Schneider Electric (personal communication); ITF (2019), ITF Transport Outlook 2019.

Demand Flexibility (DF)

Changes in electricity usage by end-use customers from their normal consumption patterns in response to changing market conditions

DF Examples

Finland: 1900 domestic boilers used to balance electricity supply

Southern California Edison: 200 MW aggregated DF portfolio

https://energianseuranta.fortum.fi/report https://www.sce.com/sites/default/files/inline-files/2019_PRP_AnnualReport.pdf

DF Potential (Residential)

Figure 1-5. Global Residential Demand Response Capacity

Source: Navigant Research37

Vision for a Digitalised Energy System

- DF: all major energy-using devices, batteries and EVs are able to perfectly match electricity <u>demand</u> with the <u>supply</u> of renewables
- IE: intelligent, adaptive systems of connected devices eliminate every last drop of energy wastage from households and businesses

Importance of Devices

Uptake of Connected Devices

Electronic Devices & Networks Annex EDNA

Not All Devices Created Equal

- It's one thing for a device to be connected to the internet
- Does not make it "smart"
- Does not make it ready to participate in DF and IE

We Need to Future-Proof Devices, Now

DF and IE expected to gather momentum

Devices can last 10, 15, 20 years

Dumb devices can be "locked out" of a smart world

To Do This We Need Policies

- Government policy makers
- Manufacturers
- Utilities
- ICT industry
- Researchers / academia
- Industry associations
- Standards organisations

Policy Guidance for Smart, Energy-Saving Consumer Devices

1. Devise Product Scope

Table 9-1. Device potential with regard to demand flexibility

Sources: Flexibility potential adapted from US Department of Energy (2019)84

	DF Potential			Comfort		
Product	Shed Shift Modulate		Modulate	Impact	Overall DF Potential	
Air Conditioners (ACs)	Low	High	Low	Medium- High*	High	
Water Heaters	Low	High	Medium	Low	High	
Thermostats	Medium	High	Low	Medium	High	
Battery Storage (incl. vehicles)	None	High	High	None	High	
Electric Vehicle Chargers	None	Medium	Medium	Low	Medium	
Lighting	Medium	None	None	High	Medium	
Refrigerators/ Freezers	None	Medium	None	Low	Low	
Dishwashers & Clothes Washers	None	Medium	None	Low	Low	
Clothes Dryers	Low	Medium	Medium	Medium	Low	

* Comfort impact is dependent on the heating/cooling strategies and the available thermal storage capacity in the building envelope (walls, windows, and roof)

Table 2-1. Summary of ENERGY STAR Devices with Optional Connected Functionality Requirements

	Comm. Hardware/ Software	Energy Consumption Reporting	Operational Status Reporting	DR	DR Override by Consumer	Remote Management	Open Access	Open Comm. Protocol
Smart Thermostats	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark
Dishwashers	~	\checkmark	\checkmark	\checkmark	\checkmark	~	~	\checkmark
Room ACs	~	√	√	\checkmark	\checkmark	\checkmark	~	~
Refrigerators / Freezers	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Clothes Washers	~	\checkmark	~	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Clothes Dryers	√	\checkmark	~	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Lighting	~	\checkmark	\checkmark			\checkmark	~	\checkmark
Pool Pumps	~	√	√	\checkmark	\checkmark	~	~	~
Electric Vehicle Supply Equipment	\checkmark			√	\checkmark		\checkmark	\checkmark
Ceiling Fans	~	√	~			~	~	~

2. Define Functionality (Macro)

- A smart, energy-saving device is a product that has the capability to receive inputs, process these inputs and independently take action, for the purpose of one or more of:
 - Demand flexibility (DF)
 - Intelligent efficiency (IE)
 - Status reporting

[paraphrased version – refer report for full]

3. Define Functionality (Micro)

Specific to device type

- E.g. Australia for ACs:
 - Mode 1 = capable of off / on
 - Mode 2 = capable of turning down by 50%
 - Mode 3 = capable of turning down by 25%
- Important not to lose comfort

4. Specify Test Methods

To prove functionality

e.g. Energy Star Specification for Room ACs

Test Method to Validate Demand Response Capability

https://www.energystar.gov/sites/default/files/ENERGY% 20STAR%20Test%20Method%20for%20Room%20Air%20 Conditioners%20to%20Validate%20Demand%20Respons

e.pdf

5. Communications Protocols

- Consider requiring "open" communications protocols
- Network layer
 - The means of communication (analogy: telephone network)
 - Transmit and receive data
 - e.g. Wi-Fi, Zigbee, Bluetooth, Ethernet, etc.
- Application layer
 - Analogy: the "language" spoken
 - Determines which products/platforms the device can communicate with
 - Interoperability: give careful consideration to "vendor lock-in"
 - e.g. brand X and brand Y appliances controlled by one single interface
 - Standards aimed at facilitating openness
 - e.g. ISO/IEC 21823 Interoperability for IoT Systems (framework)
 - e.g. Smart Electric Power Alliance Catalog of Standards
 - e.g. NIST Smart Grid Framework Tables 4.1 & 4.2
 - e.g. from NIST, IEC, ISO, IEEE, ITU, IETF, OpenADR

6. Consider Data Privacy and Security

Address how private data is stored, accessed and used

- e.g. data misuse fridge data to health insurance provider
- Regulations, e.g. European Telecommunication Standards Institute Cybersecurity Standard for Consumer IoT Devices
- Regular, frequent revision
- Communicate clearly to consumers*

Require cybersecurity protocols

- Prevent hacking of devices
- e.g. NIST reliability and cybersecurity protocols
- e.g. North American Electric Reliability Corporation's Critical Infrastructure Protection standards

7. Consider Usability

- Requirements (or suggestions) for
 - Plug-and-play
 - Incl wireless setup
 - Straightforward to operate
 - User over-ride
 - e.g. Energy Star consumers shall be able to override their smart thermostat's response to any grid request (max 72 hours)

8. Choose Your Policy Vehicle

- Mandatory all devices?
- Mandatory only connected (IoT) devices?
- Bolt on to device efficiency requirements?
- Consumer labelling
 - Include in existing mandatory energy label
 - Voluntary label
 - E.g. Energy Star connected criteria (optional)
- Financial incentives
- Industry self-regulation

9. Don't Forget Network Standby

Electronic Devices & Networks Anne

Summing Up

Summing Up

DF & IE initiatives will gather momentum

- Need to ensure devices not locked out of this
- Policies required to encourage this
 - Multiple stakeholders
- There are many issues to consider!

Thank You

- Contact steve@beletich.com.au
- Report: Policy guidance for Smart, Energy-Saving Consumer Devices
 - https://www.iea-4e.org/document/448/policy-guidance-for-smart-energy-saving-consumer-devices
- EDNA publications <u>edna.iea-4e.org/library</u>

