Contractual flexibility – The Thai experience

Randi Kristiansen
Renewables Integration and Secure Electricity Unit
Context of Thailand

• The results shown today are part of a study between EGAT and IEA on Thailand Power System Flexibility.

• The study has been completed with great thanks to EGAT for supplying detailed information on physical PPA’s and fuel supply contracts that allow IEA to understand the specific issues of contractual flexibility in the system.

• The study has been conducted within the context of the Thai electricity system
 - Enhanced single buyer system
 - Monopoly of gas supply

• Even though restructuring markets might bring even further efficiencies, it is not within the scope of this study, the study aims to provide clear actions to improve flexibility within the current market structure.
EGAT has a contracted capacity of 46.3 GW, most of which is gas fired generation.
Generation types and commitments

- The Thai system classifies its generation into
 - IPP (> 90 MW)
 - SPP (≤ 90 MW) – can be either firm or non-firm (if non-firm EGAT must take the generation)
 - VSPP (≤ 10 MW)
 - Import
 - EGAT

- IPPs are gas or coal
- SPPs are renewables or co-generation
- Imports are hydro or lignite
- EGAT own generation is hydro, lignite or gas
Evolution in contracts

Until 2034 the contracted capacity is relatively stable

Yearly evolution of minimum-take capacity in all contracts
Contractual commitments per technology

- In the contracts different technologies have different commitments

<table>
<thead>
<tr>
<th>Technology</th>
<th>Minimum-take capacity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cogeneration (firm)</td>
<td>100% (peak) and 65% (off-peak) of declared capacity</td>
</tr>
<tr>
<td>Cogeneration (non-firm)</td>
<td>100% of declared capacity</td>
</tr>
<tr>
<td>Renewables (firm and non-firm)</td>
<td>100% of declared capacity</td>
</tr>
<tr>
<td>Gas, bunker oil, lignite, coal, hydro (imports)</td>
<td>Minimum generation of declared capacity per unit</td>
</tr>
<tr>
<td>Geothermal</td>
<td>100% of declared capacity</td>
</tr>
<tr>
<td>Diesel</td>
<td>None</td>
</tr>
<tr>
<td>Hydro (EGAT)</td>
<td>100 % of declared capacity</td>
</tr>
</tbody>
</table>
Evolution in capacity margin and contracted capacity

EGAT will have a progressively higher share of new capacity, it’s important that the new capacity does not negatively impact flexibility.
Scenarios where contracted capacity affects flexibility

Scenario 2: Low renewables and off-peak demand

In the off-peak the contracted capacity is too high even if renewables produce at a very low level
Scenarios where contracted capacity affects flexibility

Scenario 4: High renewables and off-peak demand

When renewables then produce the over contracting becomes even worse
Fuel supply contracts

Currently daily take or pay volumes reduce flexibility of gas generation, in the future they should be reduced and a portfolio approach should be taken.

Reduction of take-or-pay volumes

Currently daily take or pay volumes reduce flexibility of gas generation, in the future they should be reduced and a portfolio approach should be taken.
Key recommendations to increase contractual flexibility

• Continue engaging in the development of multilateral power trade in ASEAN, with the goal of achieving more flexible conditions for hydro imports.

• Consider separate negotiation of more flexible terms for hydro imports.

• Assess the need to renegotiate firm contracts with the aim of minimising EGAT’s minimum-take obligations.

• Consider developing an auction mechanism for the renegotiation of firm contracts.

• Insist that new contracts have lower minimum-take obligations, if any, taking into account technical restrictions.

• Implement clear rules for VRE curtailment in PPAs.

• Increase flexibility in fuel supply contracts by investigating renegotiation of take-or-pay volumes.

• Develop a portfolio procurement strategy for fuel supply by mixing long- and short-term products to optimise the flexibility of gas fuel supply.
The IEA's participation in this event was made possible through the Clean Energy Transitions in Emerging Economies programme has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 952363.