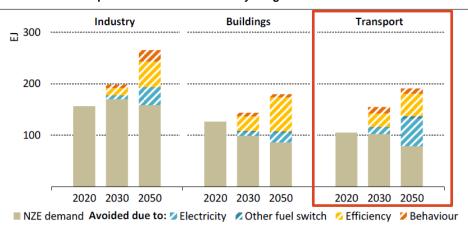


Demand-side energy data in the transport sector

IEA Demand Side Data and Energy Efficiency Indicators Workshop for Southeast Asia Thomas ELGHOZI, Energy Data Officer, End-use data and efficiency indicators

Overview

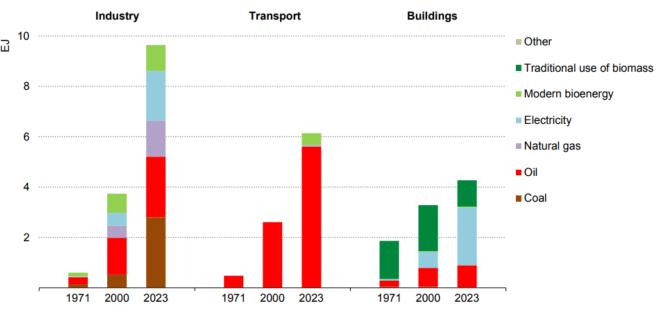
- 1. Importance of collecting good energy data for transport
- 2. Why end-use data are important?
- 3. How to classify segments, modes, vehicle types and fuels?
- 4. What can we learn from the energy balances?
- 5. What can we learn from vehicle-type data?
- 6. Developing energy efficiency indicators
- 7. Methods of collecting data
- 8. IEA tools for data capacity development.
- 9. Conclusion


Importance of collecting good energy data for transport

Why is the transport sector important?

Total final consumption and demand avoided by mitigation measures in the NZE

Transportation is important for multiple reasons such as economic activity and mobility.


Transport efficiency is the second driver (after electrification) to avoid emissions by 2050 towards global net zero.

Energy in Southeast Asia

Industry and transport have driven strong growth in energy consumption

IEA. CC BY 4.0.

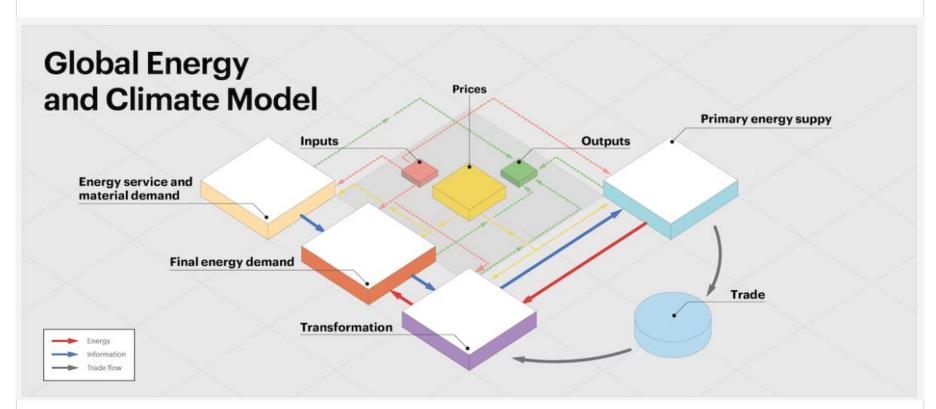
Notes: "Transport" excludes international bunkers. "Other" fuels cover geothermal, solar thermal, district heating and non-renewable waste.

Quiz

Go to:

https://www.menti.com/ and use this code: 8269 5001

Or join using the QR code:

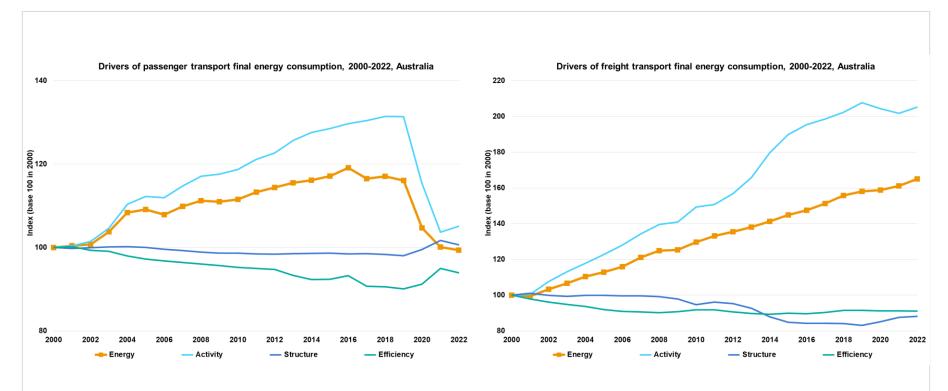


Why end-use data are important?

Demand side data are the pillars of modelling and policy activities

Disaggregated data allow more precise models and therefore policies

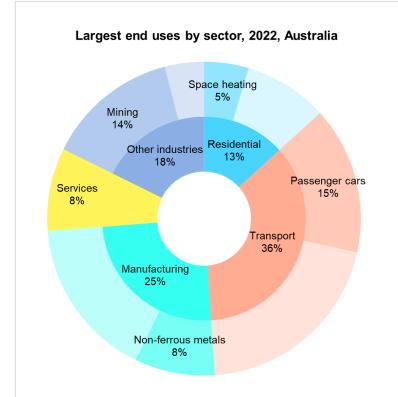
End-use data are the basis to develop efficiency indicators

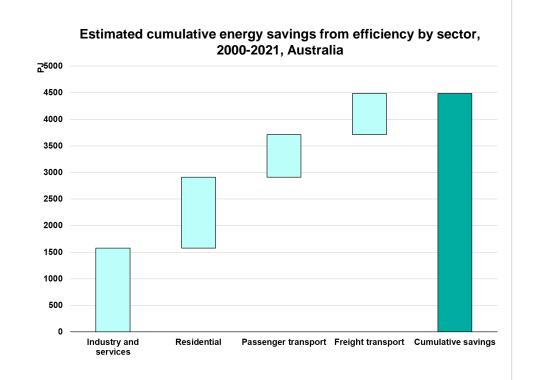

• Energy efficiency indicators are defined as a ratio between energy consumption and activity data.

$$Energy \ efficiency \ indicator = \frac{Energy \ consumption}{Activity \ data}$$

- Energy efficiency indicators are computed at the end-use or sub-sectoral level, or at an even more disaggregated level and require disaggregated energy consumption data.
- For example,
 - space cooling energy consumption per dwelling,
 - passenger cars energy consumption per passenger-kilometre.

What drives the transport energy consumption?



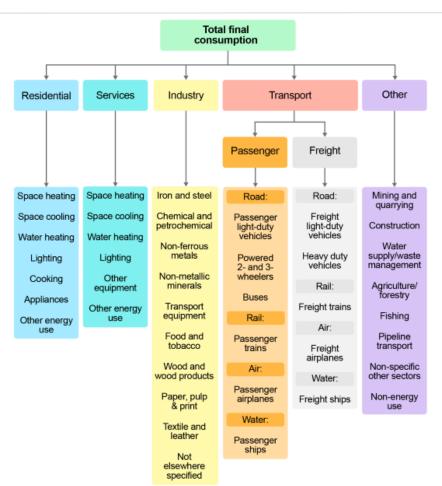


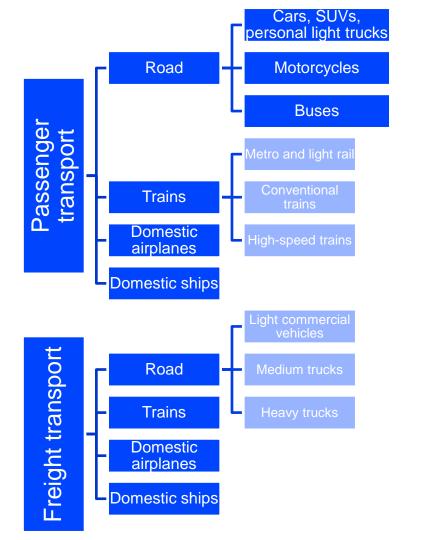
Decomposition analysis from detailed subsector and activity data gives the respective impact of key drivers of energy consumption, and providing key insights for policy design.

What we can learn from efficiency indicators – key points

In the past two decades, Australia cumulatively saved above 14% of its 2021 energy consumption. These savings mostly come from the transport sector (on par with industry and services).

How to classify segments, modes, vehicle types and energy products?


Energy balances are a compact source of information


		2022											
		MILLION TONS OIL EQUIVALENT											
		SUPPLY AND CONSUMPTION	Coal	Crude oil	Oil products	Natural gas	Nuclear	Hydro	Geotherm . Solar etc.	Biofuels & waste	Electricity	Heat	Total
Supply	(Production	4249.8	4499.2	-	3502.6	700.3	374.0	454.2	1290.3	-	1.5	15071.9
		Imports	802.5	2345.2	1365.6	1028.1	-	-	-	38.6	69.4	0.0	5649.5
	J	Exports	-832.8	-2309.2	-1406.0	-1053.8	-	-	-	-27.3	-7 <u>1.</u> 6	-0.0	-5700.8
Ž		Intl. marine bunkers	-	-	-	-	-	-	-	-	De	mand	side
0,		Intl. aviation bunkers	-	-	-	-	-	-	-	-			-
	•	Stock changes	-113.7	14.1	-20.9	-40.0	-	-	-	-0.2	-	-	-160.7
		TES	4105.8	4549.3	-61.3	3436.9	700.3	374.0	454.2	1301.3	-2.2	1.5	14860.0
Transformation and energy industries own use		Transfers Statistical differences	-7.2 -125.7	-265.6 9.7	306.2 -5.4	-38.1	-	-	0.2	0.0 0.2	-9.2	8.3	33.4
								274.0				8.3	-160.1
		Electricity plants	-1826.5	-40.4	-147.0	-960.9	-699.7 -0.5	-374.0	-379.4	-152.7 -85.6	2129.1	317.3	-2451.5 -545.0
		CHP plants	-808.3	-0.0 -0.5	-13.7	-326.5		-	-4.2		376.4		-16.4
		Heat plants Blast furnaces	-31.8 -190.0	-0.5	-11.2 -0.1	-62.3 -0.0	-0.1	-	-2.2	-14.2 -0.0	-	106.0	-10.4
		Gas works	-34.5	-	-0.1	17.6	_	_		-0.0	-	-	-190.3
		Coke/pat. fuel/BKB plants	-84.8	-	-2.5	-0.0	-	-	-	-0.1	-	-	-87.4
		Oil refineries	-04.0	-4310.6	4212.2	-0.0	_	_	_	-0.1	_	_	-98.3
		Petrochemical plants		43.5	-43.1								0.5
		Liquefaction plants	-26.3	22.6	-43.1	-16.9							-20.6
T an		Other transformation	-0.7	13.9	-0.6	-23.0	_	_		-93.4	-0.5	-0.4	-104.6
O O	- (Energy industry own use	-78.0	-8.1	-222.7	-306.3	_	_	-0.0	-13.1	-207.4	-48.8	-884.3
		Losses	-1.7	-6.8	-0.2	-30.1	_	_	-0.0	-0.3	-173.1	-23.9	-236.0
Final consumption	_	TFC	890.5	6.9	4007.0	1690.4			68.6	939.3	2113.2	360.0	10075.9
		Industry	717.7	1.8	327.3	674.5	-	-	0.8	255.2	894.9	191.9	3064.2
		Transport	0.9	0.0	2539.9	123.5	-	-	-	99.4	38.8	-	2802.5
		Residential	49.6	_	213.9	490.4	-	-	53.5	538.3	580.5	119.1	2045.3
	7	Comm. and public service	19.5	-	72.4	204.1	-	-	11.3	28.7	430.4	39.1	805.4
		Agriculture/forestry	10.0	0.0	110.6	12.7	-	-	2.5	13.0	69.7	3.6	222.2
		Fishing	0.0	-	6.5	0.1	-	-	0.1	0.0	0.9	0.1	7.6
		Non-specified	14.4	0.0	27.4	5.9	-	-	0.4	4.7	98.1	6.3	157.3
		Non-energy use	78.4	5.1	708.9	179.0	-	-	-	-	-	-	971.5

Sectors, sub-sectors or end-uses of total final consumption

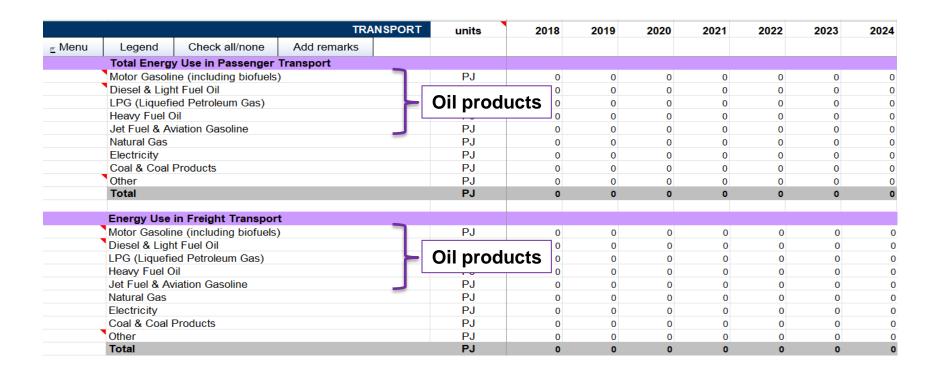
lea

Exclusions and caveats

Pipeline (own consumption)

Fuel tourism (transborder)

International aviation and shipping (bunkers)


Misallocation of oil products (agriculture and fisheries, construction, light residential...) and electricity (home charging)

Informal trade

Products scope – detail information on coal, gases, oil, etc.

Page 20

Quiz

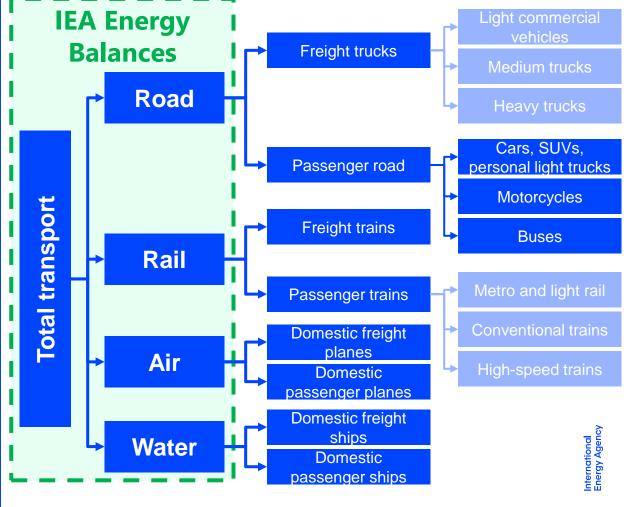
Go to:

https://www.menti.com/ and use this code: 8269 5001

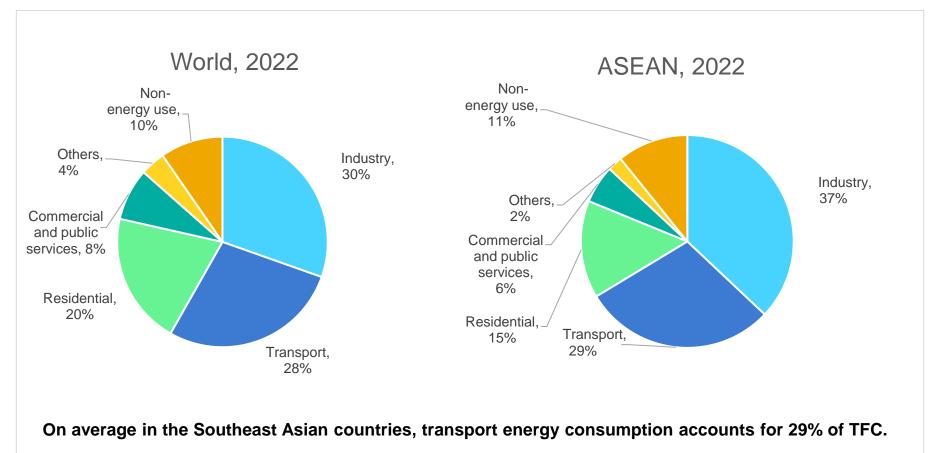
Or join using the QR code:

Page 21

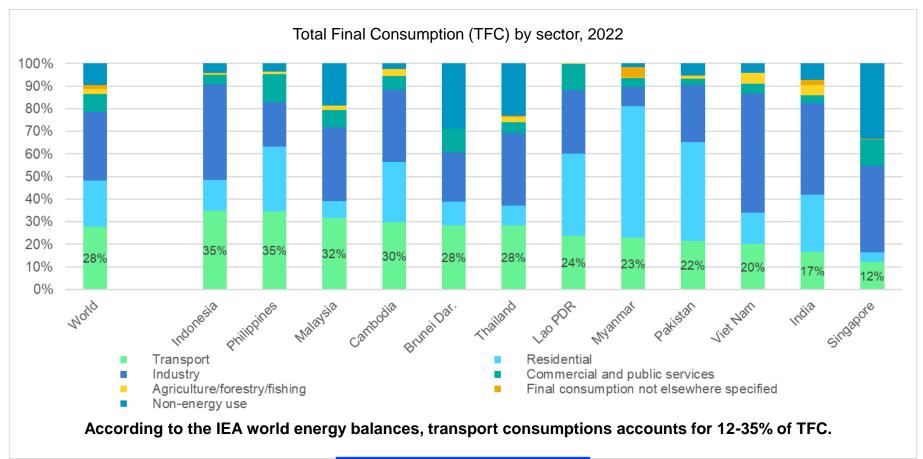
What can we learn from the energy balances?

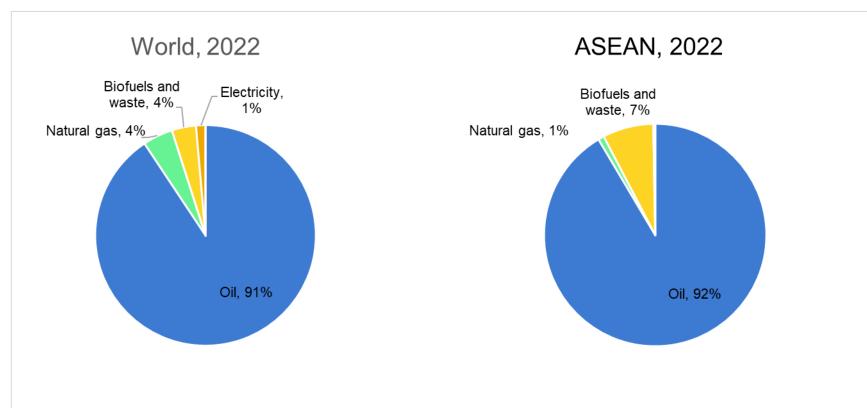

IEA 2025 Page 24

lea

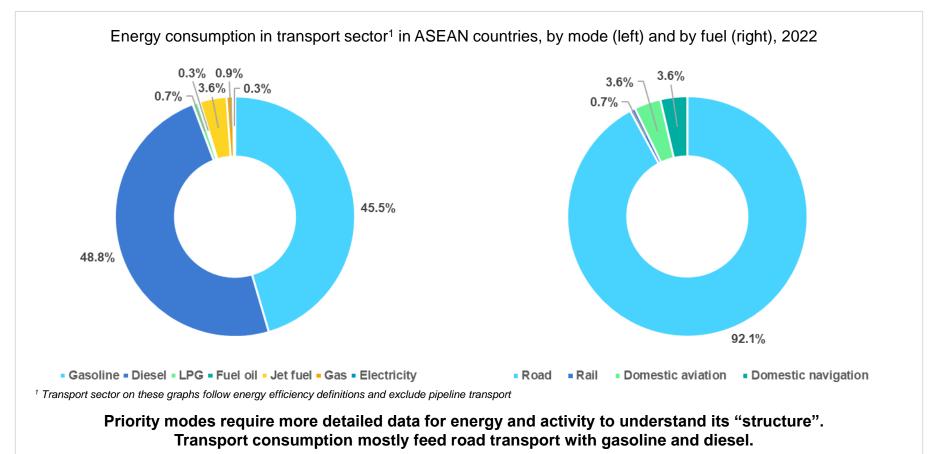


Icon credits: Icon Solutions; Vectorstall; Smalllike; Design Circle
IEA 2025. CC BY 4.0.
Page 25


Total final consumption (TFC) by sector


Which sector drives domestic demand?

Transport energy consumption by fuel



The transport sector relies on oil products for over 90% of its energy needs in Southeast Asia, with biofuels and waste accounting for most of the remaining part.

Transport energy consumption by modes and detailed fuels

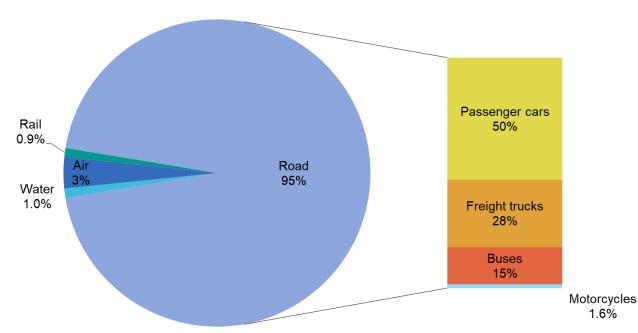
What can we learn from vehicle-type data?

What can we learn from detailed transport consumption data?

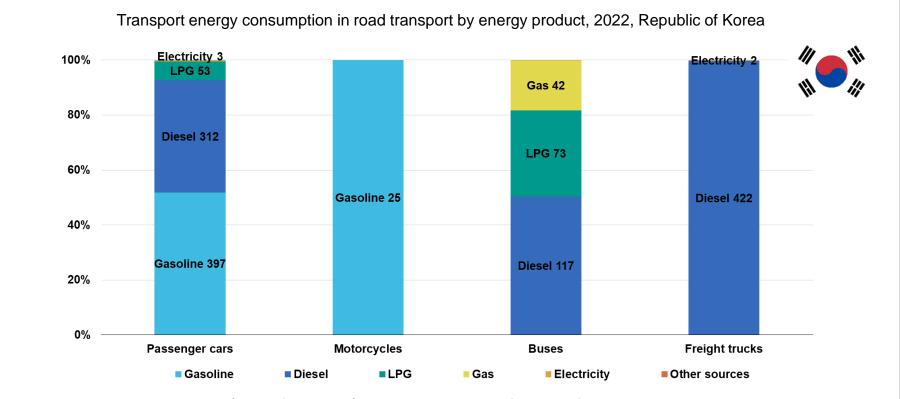
What is the share of passenger vs. freight transport?

How do passengers travel most on land: train, bus or car?

What is the fuel share for each vehicle type, and the impacts on energy security risks?

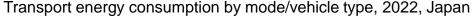

➤ How does it **compare** to other economies in the region?

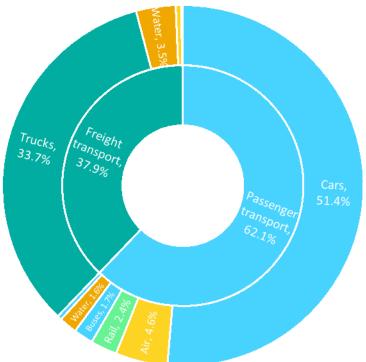
Transport consumption by modes and vehicle types – Examples



In Korea, over 95% of the transport energy consumption arise from road transport, and over 93% from passenger cars (50% alone), freight trucks and buses.

Road consumption by fuels – Examples





In Korea, all trucks (28% of the total) are dependent on diesel, while passenger cars and buses are fuelled by a more diverse mix but rely on significant amounts of diesel too.

Transport consumption by modes and vehicle types – Examples

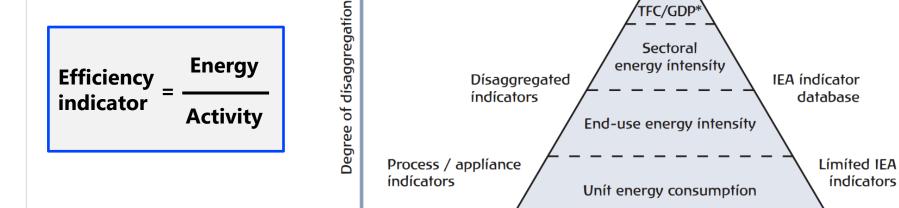
Cars alone represent more than half of all the transport energy consumption in Japan, while public passenger transport represent 10.4% and low intensity freight transport (rail and water) represent 3.7%.

Quiz

Go to:

https://www.menti.com/ and use this code: 8269 5001

Or join using the QR code:



Developing energy efficiency indicators

Methodology to build indicators - the energy indicators pyramid

Source: Energy Efficiency Indicators: Fundamentals on Statistics

Data requirement

IEA statistics

Aggregated indicators

More refined data are necessary to build detailed indicators at the sub-sectoral (or process) level.

Transport intensity indicators – coupling energy with activity data

Energy consumption data

- Transport segments
 - Passenger
 - Freight
- Transport modes
 - Road
 - Rail
 - > Air
 - Water
 - Other

Activity data

- Vehicle stocks
- Passenger-kilometres
- Tonne-kilometres

Rail

Water

Transport intensity indicators – coupling energy with activity data

Energy consumption data

- Transport segments
 - Passenger
 - Freight
- Transport modes
 - Road
 - Rail
 - > Air
 - Water
 - Other

Activity data

- Vehicle stocks
- Passenger-kilometres
- Tonne-kilometres

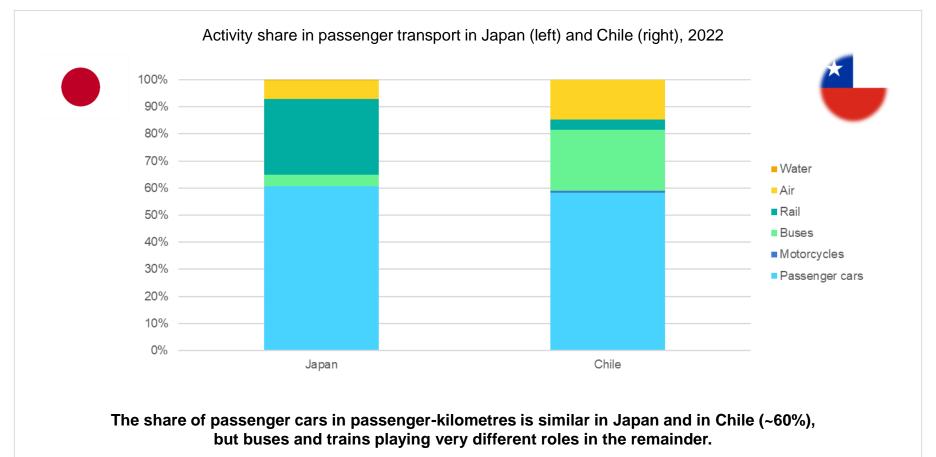
Vehicle stock

Distance travelled

Occupancy

Page 42

Activity data in the transport sector



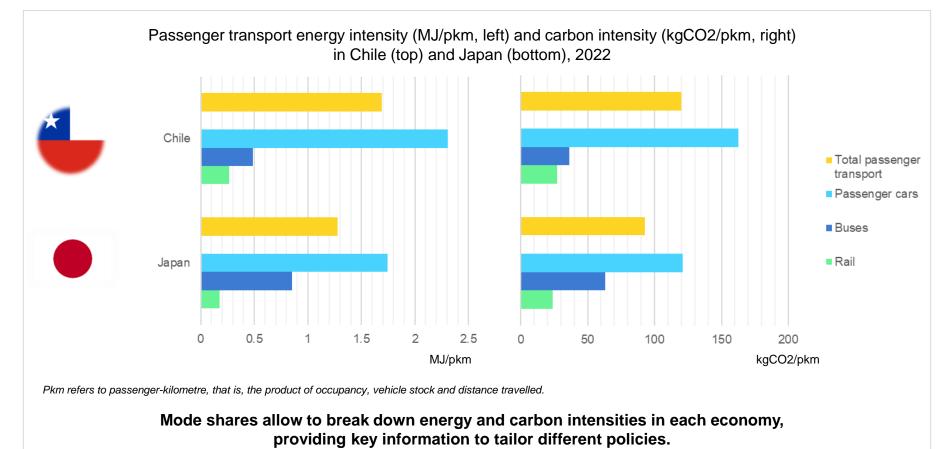
Passenger-km (pkm) or tonne-km (tkm)

Split into different modes and vehicle types – Examples

What indicators to use?

Indicator	Coverage	Energy data	Activity data	Code	Recommended indicator
Passenger transport energy consumption per GDP/capita	Overall	Total passenger transport energy consumption	GDP; Total population	ntion P2a	
Passenger transport energy consumption per vehicle-kilometre	Overall	Total passenger transport energy consumption	Total number of passenger transport vkm	P2b	
	By mode / passenger vehicle type	Energy consumption of passenger transport by mode / vehicle type A	Number of vkm of passenger mode / vehicle type A	P3a	
Passenger transport energy consumption per passenger-kilometre	Overall	Total passenger transport energy consumption	Total number of pkm	P2c	
	By mode / passenger vehicle type	Energy consumption of passenger transport by mode / vehicle type A	Number of pkm of passenger mode / vehicle type A	РЗЬ	☺
Freight transport energy consumption per GDP	Overall	Total freight transport energy GDP consumption		F2a	
Freight transport energy consumption per vehicle-kilometre	Overall	Total freight transport energy consumption	Total number of freight transport vkm	F2b	
	By freight mode / vehicle type	Energy consumption of freight transport by mode / vehicle type α	Number of vkm of freight mode / vehicle type α	F3a	
Freight transport energy consumption per tonne-kilometre	Overall	Total freight transport energy consumption	Total number of tkm	F2c	
	By freight mode / vehicle type	Energy consumption of freight transport by freight mode / vehicle type α	Number of tkm of freight mode / vehicle type α	F3b	☺

Passenger


Freight

Each indicator has its benefits and drawbacks.

Best is to work with the available data, keeping in mind the hypotheses and the analysis' limitations.

Breaking into different intensity for each mode – Examples

Quiz

Go to:

https://www.menti.com/ and use this code: 8269 5001

Or join using the QR code:

Page 47

Methods of collecting data

Methods to collect transport end-use and activity data

Administrative sources

Basis as many data are often already gathered. Essential starting point.

Transport Ministries, Vehicle registers Manufacturers and private sector International organisations (ITF, IATA, UIC, IRF...)

Survey

Costly but **very effective**. To be **designed carefully**, ideally from existing one. **Representative sample** is key.

Cars manufactures Households, mobility vehicle surveys Gas stations

Measuring

Costly but **very effective**. Often **focused** on specific equipment.

Odometer readings, tolls Video measuring

Modelling

Complementary to survey (e.g. for higher frequency) or stand-alone. Requires robust input data.

Sales and vintage to stocks

Load factor and mileage to pkm & tkm

Fuel economy and mileage to energy

consumption

Useful tools for modelling: COPERT model

Always check what data may be available in other institutions and how to complete existing data collection, before setting a new one up.

lea

Rail Transportation

Questionnaire Design:

Enterprises ISIC SECTION H: Transportation and Storage:

TABLE Purchase and consumption of electricity, fuel and lubricants for rail transportation

		Unit	Total
1.	Purchase:		
1.1.	– gas diesel oil	t	
1.2.	fuel oil: low sulphur content	t	
1.3.	fuel oil: high sulphur content	t	
1.4.	lubricants	t	
1.5.	other, please specify	t	
2.	Consumption in the country:		
2.1.	electricity	MWh	
2.2.	gas diesel oil	t	à
2.3.	fuel oil: low sulphur content	t	ional
2.4.	fuel oil: high sulphur content	t	International
2.5.	lubricants	t	ئ ک
2.6.	 – other, please specify 	t	Page

EA 2025, CC BY 4.0

lea

Household mobility survey

- Responsibility: National Statistics Offices / Ministry in charge of Housing.
- Questionnaire: Household energy or mobility survey
- Reporting period: Calendar year Y-1
- Periodicity: Pluriannual (e.g. every 5 years)
- Data providers: All households or households sample
- Source: National Households Register

lea

Basic Survey Questionnaire

Questions on fuel purchase

- Expenditure or quantity of fuel purchased for transport (gasoline, diesel, LPG, electricity...)

Questions on vehicles

- ✓ Vehicles owned (mileage, vintage)
- Other vehicles used

Questions on travel habits

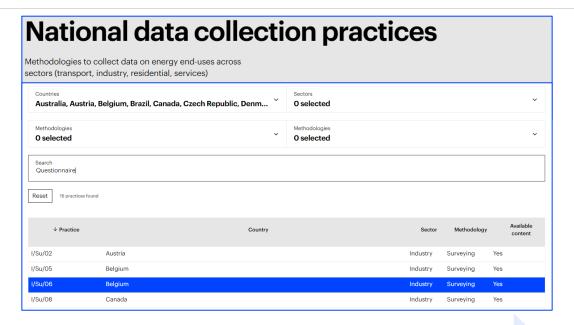
- Regular travel habits
- Exceptional travel

Quiz

Go to:

https://www.menti.com/ and use this code: 8269 5001

Or join using the QR code:



IEA tools for data capacity development.

IEA 2025 Page 62

An experience database to foster dialogue with other countries

Contact us at EnergyIndicators@iea.org and share your practice

https://www.iea.org/articles/national-data-collection-practices

A searchable database, gathering data collection practices from a variety of countries, to share expertise worldwide.

IEA resources: methodologies on indicators and e-learning courses

Fundamentals on statistics:

to provide guidance on how to collect the data needed for indicators

- Includes a compilation of existing practices from across the world
- https://www.iea.org/reports/energy-efficiency-indicators-fundamentals-on-statistics

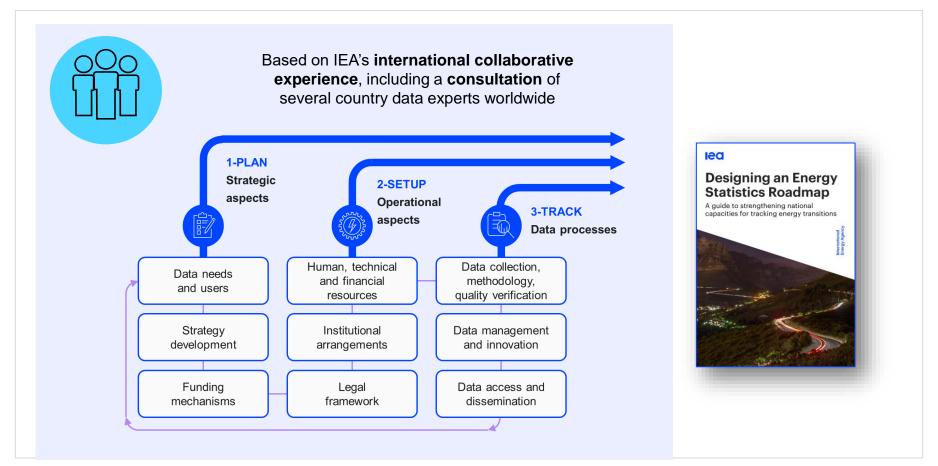
Essentials for policy makers:

- To provide guidance to develop and interpret indicators
- https://webstore.iea.org/energy-efficiency-indicators-essentials-for-policy-making

IEA e-learning courses on energy efficiency data:

https://elearning.iea.org/

Available in:
Spanish
Russian
Chinese
French



Available in: Spanish Russian Chinese

fransport fransport

New IEA guidebook – released in September 2024

Conclusion

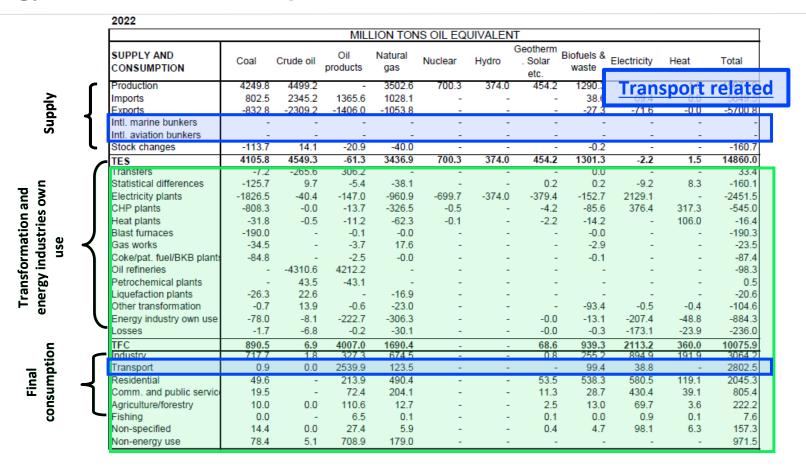
Page 66

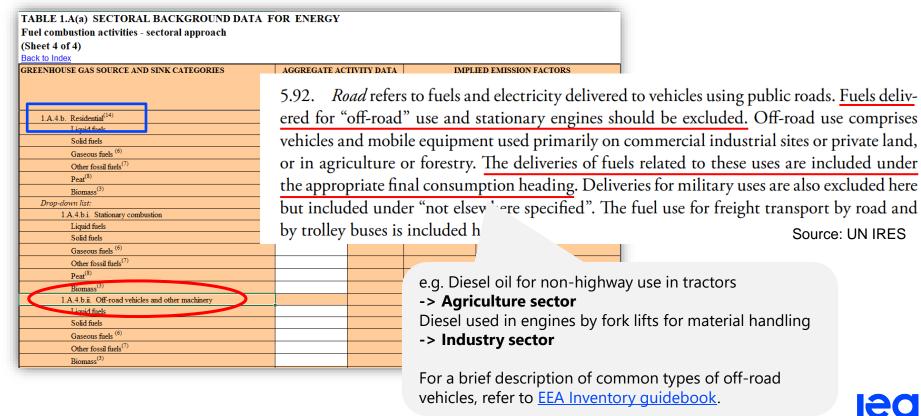
The importance of detailed end-use and energy demand data

- ✓ By providing detailed insights into energy consumption, demand-side data enables policymakers, researchers, and industry stakeholders to make informed decisions, track progress, and implement effective strategies.
- ✓ Reliable demand-side data also improves energy modelling, allowing for more accurate projections of future energy needs. Detailed demand-side energy data, coupled with activity data, enables the development of energy efficiency indicators that track progress and measure improvements over time.
- ✓ IEA is pleased to collaborate with countries to enhance demand-side data collection and analysis.

Page 6

Thank you for your attention


Any question? EnergyIndicators@iea.org


Appendices

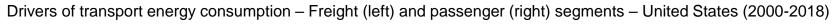
Energy balances are a compact source of information

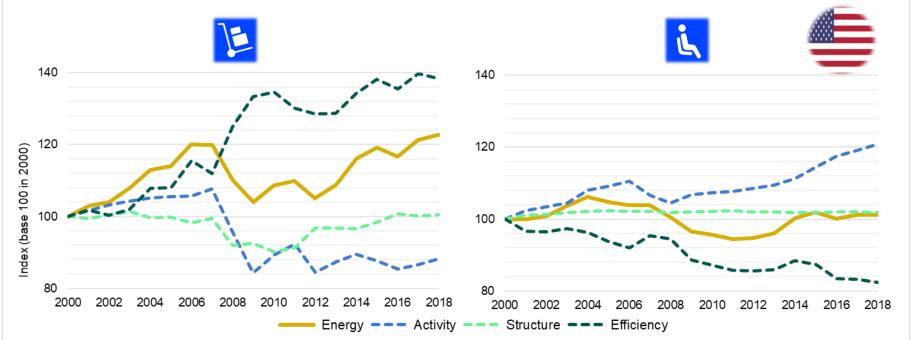
Attention: Off-road vehicles?

Transport indicators – energy and activity data

Decomposition into drivers of energy consumption

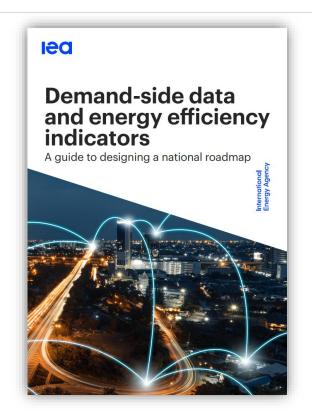
Segment	Segment End use		Structure	Efficiency effect	
Passenger transport	Cars/light trucks, buses, trains, domestic airplanes, domestic ships	Passenger- kilometres (pkm)	Share of pkm	Energy consumption per pkm	
Freight transport	Trucks, trains, domestic airplanes, domestic ships	Tonne-kilometres (tkm)	Share of tkm	Energy consumption per tkm	

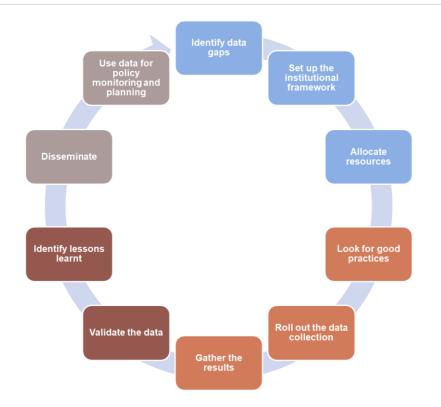

Source: IEA Efficiency Indicators Documentation 2021


End use and activity data allow to analyse energy consumption and identify the impact of three main drivers.

IEA 2025 Page 7

Decomposition analysis for disentangling consumption drivers





The consumption of each segment is driven by very different factors, to be analysed to design performant policies.

The IEA guide to designing a data collection roadmap

https://www.iea.org/reports/demand-side-data-and-energy-efficiency-indicators

International frameworks based on real experiences foster capacity building on disaggregated data collections.

Practical Toolkit to derive indicators from various sources

The IEA is developing a **toolkit** which will serve for countries to **model the end-use data** bridging the gap from raw data to the end use data. The countries will be trained to use them, building capacity to produce end-use data on their own.

WORK IN PROGRESS

Country balances data

Ad hoc surveys

Third party surveys

Toolkit

Model (Excel file) where to insert the input data and calculate the end-use data using some default (or tailored) assumptions. Word file with guidelines with the explanation of the assumptions to take and for the use of the tool

End-use and efficiency indicators data

