South Africa’s Carbon Capture Utilisation and Storage Project

Council for Geoscience
09/09/2021
Disclaimer

The information contained in these documents is the sole property of the Council for Geoscience and all rights are reserved, it is intended solely for the recipient and is confidential. Any use of this information and/or its contents by any person including the recipient and any further dissemination or disclosure of the contents of this information either in whole or in part is prohibited except with the prior written consent of the Council for Geoscience. The opinions expressed are in good faith and while every care has been taken in preparing these documents, the Council for Geoscience makes no representations and gives no warranties of whatever nature in respect of these documents, including but not limited to the accuracy or completeness of any information, facts and/or opinions contained therein. The Council for Geoscience, its Board, employees and agents cannot be held liable for the use of and reliance of the opinions, estimates, forecasts and findings in these documents.
About the CGS – Principles

- The Council for Geoscience is established under the Geoscience Act, Act 100 of 1993, as amended, and is the mandated authority of all geoscientific data and information in South Africa;

- In addition, the Council for Geoscience is listed as a Schedule 3A Public Entity in terms of the Public Finance Management Act, Act 1 of 1999;

- The Council for Geoscience’s operations are enshrined within the principles of the National Development Plan and the Strategic Development Goals;

- These are exclusively focussed toward the improvement of society through innovative geoscience solutions;
The South African energy landscape
South Africa is one of the largest energy-producers in Africa;

More than two-thirds of energy generation capacity is developed from the country’s vast coal resources;

Most of the coal-fired energy generation is produced within the Mpumalanga Province;

Many of these energy generation plants are planned for decommissioning in the next 5-10 years;
The SA energy landscape – Coal resources

- South Africa is one of the world’s largest coal producers and still has significant coal resources;

- The vast majority of these coal resources are currently developed in the Mpumalanga and Limpopo Provinces, with the largest producer being the Mpumalanga Province;

- These coal resources and the associated downstream petrochemical industries form a key contributor toward the development imperatives;
The SA energy landscape – Energy society nexus

- The coal and associated petrochemical industry will still form a key component of South Africa’s medium to long-term developmental imperatives;

- The coal and associated petrochemical industry will still form a key component of South Africa’s medium to long-term developmental imperatives;

Table 9: Jobs created by the coal industry in the rest of the economy (2015)

<table>
<thead>
<tr>
<th>Sector</th>
<th>Jobs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary Industries</td>
<td>1,953</td>
</tr>
<tr>
<td>Agriculture, forestry and fisheries</td>
<td>181</td>
</tr>
<tr>
<td>Mining and quarrying</td>
<td>1,772</td>
</tr>
<tr>
<td>Secondary industries</td>
<td>48,779</td>
</tr>
<tr>
<td>Manufacturing</td>
<td>42,701</td>
</tr>
<tr>
<td>Petroleum, chemical, rubber, plastics</td>
<td>16,881</td>
</tr>
<tr>
<td>Electricity</td>
<td>5,073</td>
</tr>
<tr>
<td>Tertiary industries</td>
<td>154,064</td>
</tr>
<tr>
<td>Transport and storage</td>
<td>119,558</td>
</tr>
<tr>
<td>Other</td>
<td>34,506</td>
</tr>
<tr>
<td>Total</td>
<td>222,892</td>
</tr>
<tr>
<td>Less imported element</td>
<td>49,799</td>
</tr>
<tr>
<td>Net jobs created</td>
<td>173,093</td>
</tr>
</tbody>
</table>

Chamber of Mines, 2018
The SA energy landscape – Mpumalanga’s economy

• Within Mpumalanga, the largest economic driver is the mining and manufacturing industries;
• These are largely linked to the coal and associated industries;
• There are however opportunities in other industries, e.g., agriculture;
• The balance is critical to maximise these opportunities;
The SA energy landscape – CO₂ emissions

- Long-term usage of coal has made South Africa one of the largest rate of CO₂ emissions in the world;

- The South African Government has however committed to reducing CO₂ emissions by up to 50% in the next 10 years;

- However, there is a significant socioeconomic requirement on coal and therefore the reduction must take a sustainable approach;

South Africa is the world’s 14th largest emitter of greenhouse gases.

The country’s energy system depends heavily on coal, though recent policy turns have signalled a possible major shift towards renewables and gas.

South Africa has ratified the Paris Agreement and has pledged to peak emissions between 2020 and 2025, before reducing them in the 2030s.
The SA energy landscape – Just Transition

- South Africa will shift toward a low-carbon economy, however will need to do so in a sustainable manner;
- Social, economic and environmental considerations must be balanced to ensure a thorough Just Transition;
- Innovative solutions are needed to enable this sustainable transition;
- Carbon Capture, Utilisation and Storage provides such a possible solution. In particular, within areas with a large coal reliance, such as Mpumalanga;
Carbon Capture, Utilisation and Storage in South Africa
SASOL Secunda is a vast coal-to-fuels and chemical plant located in South Africa. The facility issues 56.5 million tons of gases.
Carbon Capture, Utilisation and Storage in South Africa
An assessment of available geological data shows the availability of deep coal seams and potential CO₂ storage reservoirs can support CCUS development in the Mpumalanga Province;
Opportunities for Utilisation

- There are a number of possible industrial and chemical industries that can use the captured CO$_2$. These are largely linked to currently available industries and may influence additional economic development;

- Furthermore, captured CO$_2$ can be used of Carbon-Offsetting where Carbon credits may be used for additional economic development;

- Importantly, CO$_2$ can also be used to remediate the long-term negative effects of mining, including assisting in various agricultural needs;
Opportunities for Utilisation - Acid Mine Drainage

- Application CO₂ mineralisation to treat acid mine drainage. Mineral carbonation could be applied strategically in the *ex situ* treatment of mine water in South Africa, with the *four-fold holistic purpose* of:
 - Sequestering CO₂ for climate change mitigation,
 - Treating mine water for environmental pollution management,
 - Producing high-quality water from mine water for various uses (e.g. irrigation, livestock, recreational, industrial, or even domestic uses) and long-term water resource sustainability, and
 - Reducing the volumes of mineral waste residues for reduced residue management cost, reduced environmental pollution risks, and possible land reclamation.

![Diagram showing the process of CO₂ mineralisation and its benefits](image)
Opportunities for Utilisation - Fertilizer production
Take-home message

1. Hydrocarbons are important for current and future socioeconomic development;
2. South Africa will use its natural resources for continued development;
3. Mpumalanga relies heavily on the hydrocarbon sector;
4. South Africa will reduce CO2 emissions and focus on environmental sustainability;
5. CCUS provides a solution for this Just Transition;
6. The CGS will work toward implementing this technology;
7. The CGS aims to develop a pilot CCUS site in Leandra;
8. All focus is toward social, economic and environmental sustainability;