

Global Hydrogen Review 2023

Hydrogen and Alternative Fuels Unit

GHR2023 Webinar, 31 October 2023

Low-emission hydrogen faces challenging scale-up phase

- Production can increase massively but faces cost challenges
 - Number of announced projects growing rapidly
 - Slow implementation of government support schemes delaying investment decisions
 - Increasing equipment and financial costs putting projects at risk
- Efforts to stimulate demand are not sufficient to meet climate ambitions
 - Limited policy action on demand creation
 - First off-take agreements small and non-binding
 - Unclear demand signals from co-operation initiatives
- What are the key priorities to turn momentum into deployment?

Growth in electrolyser projects has mushroomed

with a trend towards larger projects.

Geographical diversity of electrolyser projects is increasing

Projects under construction or having reached FID are concentrated in Europe and China, but a growing number of projects are being developed around the world. **led**

Production routes are evolving differently

Announced low-emission hydrogen projects of 38 Mt could meet government targets to produce 35 Mt by 2030. However, only 4% have reached final investment decision or are under construction.

Costs for low-emission hydrogen projects are increasing

Inflation is having a strong impact on the costs of hydrogen production from proposed electrolyser projects, potentially impacting the economics of projects under development and delaying investment decisions.

lec

Scaling up deployment will bring down costs for renewable hydrogen

Hydrogen production costs from hybrid solar PV and onshore wind systems in the NZE Scenario in 2030

Various regions around the world have excellent renewable resources for low-cost hydrogen production. Costs could approach USD 1.5 kg H₂ by 2030.

Interest in hydrogen trade is growing, but barriers remain

Planned hydrogen exports could reach 16 Mt by 2030, though almost all projects are at early stages and less than one-third have identified a potential off-taker.

First steps on regulation and certification of hydrogen

Mutual recognition of certificates and regulations can minimise market fragmentation. IPHE developed a methodology on hydrogen related GHG emissions, as a first step towards an International Standard by ISO.

The rise of infrastructure for hydrogen transport and storage

Global hydrogen transmission pipeline length and underground storage capacity in the NZE Scenario, 2020-2050 Hydrogen transmission Underground hydrogen storage Ę 50 000 TWh 1,50**3**5 → 1,200 500 bcm Aquifer 40 000 400 25 30 000 Depleted gas field 9000 6005 20 000 Hardfock cavern 10 10 000 300₅ 100 Salt cavern 0 2025 2030 2035 202030 20450 2020 2050 Announced projects ■NZE - Repurposed pipelines ■NZE - New pipelines Announced projects Announced projects

The long lead times associated with infrastructure projects mean that while the announced length of hydrogen pipelines is in line with needs, underground storage requires urgent and accelerated action

120

Multilateral financial commitments are growing

Multilateral development banks are increasing financial commitments with EMDEs in the area of hydrogen

Patenting on key hydrogen demand applications remains low

Global hydrogen patenting surges, but patenting activity remains remarkably low for key hydrogen-consuming technologies (with lower TRL levels) in sectors in which emissions are hard to abate

120

Demand creation is falling behind production ambitions

Actions from governments, international co-operation initiatives and the private sector fall short of production ambitions

Ie0

Existing applications are forging ahead to adopt low-emission hydrogen

The majority of the low-emission hydrogen production projects having reached FID are linked to existing applications of hydrogen

- 1. Implement support schemes for low-emission hydrogen production and use
- 2. Take bolder action to stimulate demand for low-emission hydrogen, particularly in existing hydrogen uses
- 3. Foster international co-operation to enable hydrogen certification and mutual recognition
- 4. Address regulatory barriers, particularly for project licensing and permitting
- 5. Support project developers to keep momentum during the inflationary period and to extend regional reach

• Updated "Hydrogen Production Projects Database" and new "Hydrogen Infrastructure Projects Database" - now online

https://www.iea.org/data-and-statistics/data-product/hydrogen-projects-database

Project name			Date online Decomission date	Status	Technology				Product End use			ed Size		Normalised capacity IEA zes				8			
		Country				Technology Comments	Type of electricity (for electrolysis projects)	If dedicated renevables, type o renevable	×	Restining Ammonia Methanol Iton&Steel Other Ind Mobility Power CHP Other heat Biotude Stored	CH4 grid in). CH4 mobility		Mwel	Nm' H _a ih	ktH2/y tC	D; captured/y C	sarbon stimated apacity [Nm" [/hour]				
Pego coal plant transition		PRT		Feasibility stud	y Other Electrolysis	Unknown PtX	Dedicated renewable	Solar PV	H2		0.5MV or	1.5x H2Aj	0.5	111	0.1		111 [97:	9]			
Seallysie		FRA	2023	Operational	PEM		Dedicated renewable	Olfshore wind	H2		1MW, 4003	kg H2/d	1.1	192	0.1		192 [974	4],[1584]			
Rajasthan pilot plant		IND	2021	Operational	Other Electrolysis	Unknown PtX	Dedicated renewable	Solar PV	Ammonia	1	5: NH3/da	y - 5MW	5	1111	0.9		[975	5][1196]			
DCP Group demo project		MAR		FID/Constructi	io Other Electrolysis	Unknown PtX	Dedicated renevrable	Unknown	Ammonia	1	4t NH3łda	y production					[976	5][994][1126]			
Hafars rolling project		SWE	2023	Operational	ALK		Grid		H2	1	17MV		17	3696	2.9		3696 [978 [199	8][1118] [1677] 19] [2081]			
	Ref		Project	name	Countr	y Country Cou	untry Country I	Country Count	ע	Partners	Announced start date Date online Decomissio	n date Repurp osed/ne w	Status	Pipeline typ	e Announced Siz	e Length km		Length	newIEAEstimated	Length_repIEAEstimated	Opera bar
	PiP-19	Spanish Hydrog Plata axis, Puer connections)	tollano a	ork: Axis 2 (Via nd Coruña-Zan	dela nora ESP				Enagás		2030 2030	Repurposed & New	Feasibility study	Onshore		15	00 km		1300.0	200.0	
	PiP-20	Cantanhede-Fi	gueira da	Foz	PRT				REN		2030 2030	New	Concept	Onshore	81 GWh/daj	4	0 km		40.0	0.0	
	PiP-21	Cantanhede-M	angualde	Celorico-Mon	forte PRT				REN		2030 2030	Repurposed	Concept	Onshore	81 GWh/day	3	75 km			375.0	
	D(D. 22	He for			ED A				GRTax		2020 2020	Repurposed	Concert	Onchore	200 GMM	. 1200 km (700	km repurped	~0	500.0	700.0	

- Two new interactive web tools coming up:
 - "Hydrogen Production Projects Database Explorer" allows to explore the content of the database through a map.
 - "Levelised Cost of Hydrogen Maps" visualise global hydrogen production costs from renewables and allow to explore the impact of key parameters on costs.

[218] [219] [219] [220]

