

ASEAN-IEA Webinar: The Role of Industry in Buildings Policy Development

Thursday, 22 July 2021 (14.00 – 16.00 GMT +7)

Opening Remarks

Mr. Gerald Gracius Y. Pascua

Senior Officer Energy, Energy and Minerals Division, ASEAN Secretariat

Webinar Agenda

TIME (Jakarta)	ACTIVITIES
14:00 - 14:05	Webinar opening by MC
	Kianda Syahindra, ASEAN Centre for Energy
	Opening Remarks
	Mr. Gerald Gracius T. Pascua, ASEAN Secretariat
14:05 - 14:10	Introduction and Webinar Overview
	Kianda Syahindra, ASEAN Centre for Energy
14:10 - 15:50	Moderator: Dr. Ian Hamilton, UCL Energy Institute & International Energy Agency
	Panellists:
	1. Mr. Ir. Mochammad Sulton Sahara, M.Eng., Certain Functional Officer, Associate Expert on Building and Housing, Directorate
	General of Cipta Karya, Ministry of Public Works and Public Housing, Indonesia, "Policy Energy Conservation in Building in Indonesia"
	2. Mr. Zulkifli Zahari, President, Malaysia Association of Energy Service Companies, "Building Energy Policy and Case Studies on
	How Energy Service Companies Can Contribute Towards The Delivery of Energy Efficiency in Buildings"
	3. Mr. Matthieu Caille, Consultant in Energy Efficiency & Low Carbon Development, GreenBuilding SAS / Global Buildings
	Performance Network, "How Industries can Best Support Building's Policies Development Efforts toward Reaching NDC
	Targets?"
	4. Mr. Christopher Seeley, Energy Efficiency & Climate Change Expert and CEO, Climate Change Solutions (ESCO in Thailand),
	"The Role of Industry in Buildings Policy Development "
	15-minute presentations each, followed by a Q&A Session.
15:50 – 15:55	Closing Remarks
	Mr. Muhammad Indra Wahyudin, ASEAN Secretariat
15:55 – 16:00	Survey and Closing
	Kianda Syahindra, ASEAN Centre for Energy
16:00	End of Webinar

Participants should ensure a convenient environment and reduce background noises such as turn-off cell phones and etc.

Participants should mute their microphones and keep their video cameras turned off so that the webinar can run smoothly without interruptions.

This webinar will be recorded and uploaded to our YouTube channel. We kindly ask for your understanding and consent in doing so.

For Q&A session:

• Those who wish to ask or speak may use the chat function in the control panel. The moderator will let the speakers know if there is are questions for them.

Moderator

Dr. Ian Hamilton

Associate Professor, UCL Energy Institute & International Energy Agency

ASEAN-IEA Webinar: The Role of Industry in Buildings Policy Development

22nd July 2021

International Energy Agency

PANEL AGENDA

Moderator: Dr Ian Hamilton, UCL Energy Institute & International Energy Agency

Speakers:

- Mr. Ir. Mochammad Sulton Sahara, M.Eng., Pejabat Fungsional Tertentu (JFT) Tata Bangunan dan Perumahan, Directorate General of Cipta Karya, Ministry of Public Works and Public Housing, Indonesia
- Mr. Zulkifli Zahari, President, Malaysia Association of Energy Service Companies
- Mr. Matthieu Caille, Consultant in Energy Efficiency & Low Carbon Development, GreenBuilding SAS / Global Buildings Performance Network
- Mr. Christopher C. Seeley, Energy Efficiency & Climate Change Expert and CEO, Climate Change Solutions (ESCO in Thailand)

Net-Zero Carbon

Why is buildings decarbonisation so critical?

Source: GlobalABC/UNEP/IEA, (2019), Global Status Report for Buildings and Construction 2019

Buildings and construction are a key sector for the clean energy transition, and reaching the goals of the Paris Agreement

Buildings in a Net Zero Emissions Scenario

What is needed to get to net-zero buildings?

And also:

- ✓ 100% lighting by LEDs by 2030
- ✓ Universal access to electricity and clean cooking by 2030
- Most appliances and cooling systems sold are at today's best in class by 2035
- ✓ All new buildings are zerocarbon-ready by 2030
- ✓ 2.5% buildings are retrofitted to be zero-carbon-ready every year by 2030

ASEAN Roadmap for Sustainable Buildings and Construction 2020-2050

Building on the Regional Roadmap for Asia

GlobalABC Regional Roadmap for Buildings and Construction in Asia

2020-2050

Towards a zero-emission, efficient, and resilient buildings and construction sector

Regional Roadmap for Asia

- Provides a comprehensive framework
- · Contains info on "current status"
- Contains many examples and responses from ASEAN countries
- Network of key stakeholders (approx. 200 respondents/ participants/ reviewers)
- Highlights where the biggest data and ambition gaps are

Opportunity for ASEAN Roadmap

- More differentiation between member states or groups of member states
- Will be more specific in terms of which actions for which context, and about **how** to implement the recommended actions
- Integrate "enabling" actions on capacity building and finance with other actions
- More targeted and specific actions

ASEAN Roadmap - Draft vision and strategies, per theme

NEW BUILDINGS New buildings are designed such that they enable higher levels of thermal comfort and energy efficiency, resulting in comfortable, affordable and low carbon buildings.	EXISTING BUILDINGS Existing buildings are retrofit to achieve an appropriately high level of energy performance to reduce fuel costs and improve thermal comfort.	SYSTEMS AND DEPERATIONS To promote the adoption of energy efficient systems and modes of operations that reduce energy bills and emissions, and increase comfort	MATERIALS To mainstream the use of materials and construction techniques that lower embodied carbon and improve energy performance	RESILIENCE Dities are planned to limit construction in risk areas, ensuring critical urban infrastructure services, including vulnerable populations, and integrating resilience attributes in building materials.	URBAN PLANNING Cities are developed using integrated approaches and policies to be more sustainable, resource-efficient, compact, connected, and liveable.	INTEGRATION OF CLEAN ENERGY Cities are powered by clean, integrated energy systems enabling buildings to provide flexibility to the power system with the right policies and regulations.
Strengthen the adoption and compliance of mandatory building energy codes	Promote the uptake of high performance fabric systems	Improve quality, availability and efficiency of appliances and systems	Promote new design and construction practices for greater material efficiency	Improve adequacy and reliability of built environment resilience	Improve coordination and policy alignment for low-carbon development	Make commitments to net-zero carbon buildings over whole life-cycle
Boost market demand for efficient, low carbon	Boost the rate of energy efficiency retrofits	Encourage uptake of clean, smart and efficient devices and systems	Decarbonise production of carbon intensive materials	Foster a whole-of- government approach to resilience	Boost low-carbon urban infrastructure and	Foster the uptake of clean and renewable energy
buildings	Boost the quality of energy efficiency retrofits	Improve efficiency of building operation	Collect data and promote disclosure of embodied carbon	Integrate resilience in building codes and materials	construction	Support clean and renewable energy through regulatory frameworks
Boost capacity in delivery of efficient, low carbon buildings	Promote the adoption of building performance standards and codes	Promote the recognition of good system and operational energy performance	Governments leading by example	Increase and monitor data and information on disaster risks	Expand capacity to deliver low-carbon urban development	Promote grid interactive efficient buildings

New buildings draft vision and strategy

Example timeline: New buildings

Strategy elements to meet desired outcome	NB1: Strengthen the adoption of mandatory building energy codes Timeframes:							
eg. NB1	Current status	By 2025	By 2030	For net-zero carbon				
NB.1.1 Increase strength and coverage of building energy codes	Across ASEAN, only Singapore has mandatory building energy codes covering all sectors (residential, commercial and public).	All countries have mandatory building energy codes covering all sectors Most countries have a national standard for net-zero carbon buildings	Include requirements for embodied carbon, urban planning, resilience, RE in codes All countries have a national standard for net-zero carbon buildings	All countries and jurisdictions with net-zero carbon compatible codes				
	Others have voluntary or mandatory codes for certain parts of the sector, often for buildings above a certain floor area, and others are still in development			ones vs dates, to serve as s for tracking progress				
NB.1.2 Strengthen implementation capacity	Low implementation capacity at municipal level a barrier to adoption and enforcement of mandatory building codes. Low adoption of voluntary standards.	Tools developed to facilitate compliance checking and implementation Training programmes rolled out within government Most states/provinces adopt mandatory building code for State/provincial buildings	Continuation of capacity building and accreditation programmes to support the roll-out of building energy codes All states/provinces adopt mandatory building code for State/provincial buildings Most local/municipal authorities adopt building codes into byelaws	Ongoing capacity building at all levels of implementation chain. Full enforcement and compliance with building codes across all jurisdictions				
Examples of proposed actions, examples, indicators for tracking progress Targeted actions to support strategy element, by group of countries where relevant Examples of current good practice, from ASEAN or elsewhere								

lea

Contribute and keep in touch!

ASEAN Roadmaps collaboration website: access here

The questionnaire contains a total of 8 sections, and each should take around 15 to answer

Please prioritise the sections you are the most familiar with.

Buildings Roadmaps – next steps

- Seek feedback and input from AMS on policy mapping and available data sources to inform the roadmap.
- Continue analysis and research to inform and improve next drafts of roadmap alongside feedback from ASEAN.
- Continue to plan and deliver the webinar and workshop series with ACE
- if you have good case studies, reports, or datasets to support our roadmap on zero-emission, efficient and resilient buildings and construction in Southeast Asia, please get in touch!
- Project timeline:

Thank you for your engagement!

Keep in touch at emily.mcqualter@iea.org i.hamilton@ucl.ac.uk

Moderator & Panelists

Moderator

Dr. lan Hamilton

Associate Professor, UCL Energy Institute & International Energy Agency

Mr. Ir. Mochammad Sulton Sahara, M.Eng.

Certain Functional Officer, Associate Expert on Building and Housing, Directorate General of *Cipta Karya*, Ministry of Public Works and Public Housing, Indonesia Mr. Zulkifli Zahari

President, Malaysia Association of Energy Service Companies (MAESCO)

Panelists

Mr. Matthieu Caille

Consultant in Energy Efficiency & Low Carbon Development, GreenBuilding SAS / Global Buildings Performance Network

Mr. Christopher C. Seeley

Energy Efficiency & Climate Change Expert and CEO, Climate Change Solutions (ESCO in Thailand)

1st Presentation

Policy Energy Conservation in Building in Indonesia

Mr. Ir. Mochammad Sulton Sahara, M.Eng.

Certain Functional Officer, Associate Expert on Building and Housing, Directorate General of *Cipta Karya*, Ministry of Public Works and Public Housing, Indonesia

POLICY ENERGY CONSERVATION IN BUILDING IN INDONESIA

MENTERIAN PEKERJAAN UM

submitted by:

Ir. Mochammad Sulton Sahara, M.Eng. Certain Functional Officers Associate Expert on Building and Housing

> at the event Meeting ASEAN-IEA Webinar: The Role of Industry in Buildings Policy Development Jakarta, 22 July 2021

GLOBAL WARMING? CLIMATE CHANGE?

93.3%

3

a Source

Enter City Era/Urban Buildings are getting crowded 56,7% population population Indonesia Live in urban 2020, and will increase to 72,9% at 2045 a know add 232 million (Source senior Advisor to the Urban Regional Development Institute, Wahyu Mulyana, 2021)

Issue Urban

Cities as epicenters of growth, have various functions, but are faced with complicated actual problems that threaten their sustainability in the future.

Social

- High urbanization and metropolis.
- Uncontrolled horizontal city sprawl.
- The urban poverty rate is still high.

•

Limited access to public services (infrastructure & housing) for the poor.

Economy

- Uneven economic growth, still concentrated in metropolitan and big cities.
- Level of competition against world cities
- Increasing land value, making it difficult to acquire land for public interest (especially infrastructure).
- Increasingly limited natural resources (finite resources).
- Modernization that leads to the homogenization of the face of the city.

Environment

- High Ecological Palm, low biocapacity, ecological overshoot occurs.
- Environmental carrying capacity is declining.
- Repetitive flooding
- Congestion traffic.
- The decline in the quantity and quality of urban green open spaces.

Entering the City/Urban Era...

Urbanization goes hand in hand with economic growth...

When cities with the smallest entities are buildings, Indonesia is transformed into a more modern one, almost not accompanied by an increase in the quality of its space.

Buildings are part of BIG PROBLEM...

...but, Buildings can be a BIG SOLUTION to this problem!

Law No. 28 of 2002 concerning Buildings (UUBG) is the legal basis for the implementation of Buildings in Indonesia to meet TECHNICAL STANDARDS.

Government Regulation Number 16 of 2021 concerning Implementing Regulations of Law Number 28/2002 concerning Buildings is a BUILDING CODE in Indonesia.

LAW NO 28 YEAR 2002 CONCERNING BUILDING

Article 3:

The building arrangement aims to realize a building that is functional and in accordance with the building layout that is harmonious and in harmony with its environment.

SUSTAINABLE BUILDING

Spatial Level (Spatial Hierarchy)

as a whole and as a piece

Law 26/2007 on Spatial Planning mandates the creation of a safe, comfortable, productive and sustainable space, as a pillar of urban and regional development reform

Sustainable Urban Development (SUD) at 4 levels: Building/Site, Neighborhood, District and City/Region

Building Operation Mission Green

Sumber: Global Footprint Netwo

14

Building Operation Mission Green

Building Age (in years)

BGH Supports National Action Plan-Mitigation Climate Change Adaptation

National Plan for Reducing Greenhouse Gas Emissions

In order to follow up on the Bali Action Plan agreement at the 13th Conferences of Parties (COP) of the United Nations Frameworks Convention on Climate Change (UNFCCC) and the results of COP-15 in Copenhagen and COP-16 in Cancun as well as fulfill the commitments of the Government of Indonesia in the G-20 in Pittsburgh, In order to reduce greenhouse gas emissions by 26% on their own (or by 41% if they receive international assistance) by 2020 from conditions without an action plan (business as usual / BAU), it is necessary to develop steps to reduce greenhouse gas emissions.

"Indonesia will reach 26% (41% with help international) for subtraction emission GHG, compared with "Business as Usual" year 2020"

President Yudhoyono, 2009

26%

41%

Building building will play a role big for reach Target National

Building Management in Indonesia

2. Fulfill: **BGH standard** must in tune and compatible with friendly environment life.

Implementation of BGH (mandatory)

Implementation of BGH (recommended)

Government Regulation 16/2021 concerning Regulations for Implementing Building Law

GREEN BUILDING

Buildings that meet the Technical Standards for buildings and have significantly measurable performance in Saving energy, water, and other resources through the application of green principles in accordance with functions and classifications in each stage of its implementation.

Comparison Rating

breeom				EX GREN	MUEX	P	reen star	GREE	NSHIP	A CON		
BREEAN	٨	LE	ED	Green	Mark	Gre	een Star	GREEN	SHIP	BG	H-GA	RUDA
Pass	30 %	Certified	40 Points	Certified	50 Points	4 Star	45 Points	Bronze	35 %	Pratama	45%	74,25 poin
Good	45 %	Silver	50 Points	Gold	75 Points	5 Star	60 Points	Silver	46 %	Madya	65%	107,25 poin
Very Good	55 %	Gold	60 Points	Gold Plus	85 Points	6 Star	75 Points	Gold	57 %	- Utama	80%	132,00 poin
Excellent	70 %	Platinum	80 Points	Platinum	90 Points			Platinum	73 %	-		4
Outstanding	85 %							- icelinaini	1011		K	P
						<u>À</u> n					ALL ALL	

PERFORMANCE ASSESSMENT OF INDONESIAN GREEN BUILDINGS

INDONESIA GREEN BUILDING STANDARD

	TECHNICAL STA	NDARDS			
165 STANDARD POINTS	7 ORDER OF FULFILLMENT	4 TAHAPAN	3 PERINGKAT	2 KATEGORI	1 LOGO
Site management; energy use efficiency; efficiency of water use; indoor air quality; the use of environmentally friendly materials; waste management; wastewater management,	1. New Building-compulsory;	Planning	UTAMA (PLATINUM)	Mandatory	
green construction principles, utilization management, demolition methods that refer to improving the quality of	 New Building-recommeded; Existing Building-Compulsory; Existing Building-recommeded 	Construction	MADYA	Mandatory	
post-demolition sites since the planning, implementation, utilization and demolition .yg mengacu pada	5. Community Housing-recomme 6. New Area-recommended:	Utilization	(GOLD)		
peningkatan kualitas tapak pasca pembongkaran sejak dari	ualitas tapak pasca pembongkaran sejak dari 7. Exixting Area-recommended PRATAI		PRATAMA	Recom	State HIME
perencanaan, pelaksanaan, pemanfaatan dan pembongkaran.		Demolition	(SILVER)	mended	

National Placard Green Building

Green Building Certificate

Gree DISTRICT / STATE THAT TH CATEGORY: BUILDING / AI WHICH HAS MET THE REQUIREMENTS UTAMA/N	TIFICATE En Building City government E BUILDING BELONGS TO REA / COMMUNITY GREEN HOUSING IS LOCATED AT		TANGGAL LOCAL GOVERNMENT LOGO District Head / Head of Department NAMA NIP.	18.0 CM
TECHNICAL PLANNING /CONSTRUC	Bangunan Gedung Hijau	IZATION STAGE	Bangunan Gedung Hijau	
1.50 CM	20.7 CM		6.0 CM	1.50 CM
Green Building Logo	29.70 CM			go Hologram

NEW BGH PLANNING GREEN BUILDING PERFORMANCE

25%

Conservation Energy

Rating Performance Step Planning, as tool for rate plan technical building that have Fulfill requirements technical for published Building Approval (PBG Persetujuan Bangunan Gedung).

Conservation Water

Rating Performance Step planning consist from 7 aspect with total score 165 points that is:

1. Site Management

____%

- 2. Efficiency Use Energy
- 3. Efficiency Use Water
- 4. Indoor Air Quality
- 5. Eco-Friendly Material
- 6. Solid Waste Management
- 7. Waste Water Management

THE PERFORMANCE OF DEMOLITION GREEN BUILDING

PERFORMANCE OF DEMOLITION GREEN BUILDING

26%

Decrease GHG

With Help International

3

4<u>1</u>_%

GREEN COMMUNITY RESIDENTIAL GREEN BUILDING PERFORMANCE

GREEN COMMUNITY RESIDENTIAL GREEN BUILDING PERFORMANCE

KELOMPOK DASAWISMA MELATI4A RT.004/01

Urban Heterogeneous Residential

THE WARD

Traditional Residence

Source : <u>http://way4x.wordpress.com/cepat-tanah-</u> leluhur/sejarah-suku-baduy/perkampungan-suku-baduy/

CONCLUSION

the need for strong CHANGE support from all actors implementing energy conservation, to jointly strengthen the Green Building institution in government agencies and the community. So that we can carefully anticipate global warming and climate change with a focus on conserving energy, and eliminating waste through empowering state institutions. So that the value of this business can become a reality to be able to save the world. Because in essence, the Earth that we inhabit comes from the inheritance of our ancestors, but it is a loan from our children and grandchildren. Our obligation to return it in a state of sleep: GREEN.

You know personal following this? Look not anyone....?

For a power, for Becomes hero them must:

CHANGE!!

we must CHANGE, so that heroism is always there...

THANK YOU

01. Performance Assessment of New Building Planning

NO	PERFORMANCE ASSESSMENT		LUE
NO			POINT
Α.	SITE MANAGEMENT	23%	38
В.	ENERGY USE EFFICIENCY	28%	46
С	WATER USE EFFICIENCY	13%	22
D	INDOOR AIR QUALITY	12%	19
Е	USE OF ENVIRONMENTALLY FRIENDLY	13%	21
E	MATERIALS		
F	WASTE MANAGEMENT	4%	7
G	WASTEWATER MANAGEMENT	7%	12
	NUMBER OF POINTS	100%	165

02. Performance Assessment of New Building Construction

NO	PERFORMANCE ASSESSMENT	VA	LUE
NO	PERFORMANCE ASSESSMENT	% POINT	
A.	CONFORMITY OF GREEN BUILDING	45%	74
	CONSTRUCTION PERFORMANCE	T370	17
Β.	GREEN CONSTRUCTION PROCESS	36%	60
C.	GREEN BEHAVIOR PRACTICES	12%	20
D.	GREEN SUPPLY CHAIN	7%	11
	NUMBER OF POINTS	100%	165

03. Performance Assessment of Utilization of New Buildings

NO	PERFORMANCE ASSESSMENT	VALUE		
NO	FERFORMANCE ASSESSMENT	%	POINT	
A.	ORGANIZATION AND GOVERNANCE OF GREEN BUILDINGS	35%	58	
B.	MAINTENANCE OF BGH PERFORMANCE AT THE TIME OF UTILIZATION	59%	98	
C.	ROLE OF RESIDENTS /USERS OF GREEN BUILDINGS	5%	9	
	NUMBER OF POINTS	100%	165	

04. Performance Assessment of Building Demolition

NO	PERFORMANCE ASSESSMENT	VA	LUE
MO	FERFURNANCE ASSESSMENT	%	POINT
A.	DISASSEMBLY PROCEDURE	58%	95
В.	ENVIRONMENTAL FOOTPRINT RECOVERY	42%	70
Ъ.	EFFORTS		
	NUMBER OF POINTS	100%	165

05. Performance Assessment of Utilization of Existing Buildings

NO	PERFORMANCE ASSESSMENT	VA	LUE
	PERFORMANCE ASSESSMENT	%	POINT
A.	ORGANIZATION AND GOVERNANCE OF GREEN BUILDINGS	50%	83
В.	RETROFITTING CONSTRUCTION PROCESS	16%	26
C.	MAINTENANCE OF BGH PERFORMANCE AT THE TIME OF UTILIZATION	30%	50
D.	ROLE OF RESIDENTS /USERS OF GREEN BUILDINGS	4%	6
	NUMBER OF POINTS	100%	165

06. Performance Assessment of Demolition of Existing Building

NO	PERFORMANCE ASSESSMENT	VA	LUE
NO	FERFORMANCE ASSESSMENT	% POINT	POINT
A.	DEMOLITION PROCEDURE	58%	95
р	ENVIRONMENTAL FOOTPRINT RECOVERY		
В.	EFFORTS	42%	70
	NUMBER OF POINTS	100%	165

07. Performance Assessment of Planning of Community Green

NO	PERFORMANCE ASSESSMENT	V	ALUE	
	PERFORMANCE ASSESSMENT	%	POINT	
Α.	REDUCTION OF ENERGY CONSUMPTION	24%	39	
В.	REDUCTION OF WATER CONSUMPTION	16%	26	
C.	SELF-MANAGEMENT OF WASTE	22%	36	
D.	USE OF LOCAL AND ENVIRONMENTALLY FRIENDLY BUILDING MATERIALS	9%	15	
E.	OPTIMIZATION OF GREEN OPEN SPACE	15%	24	
F.	SITE MANAGEMENT	15%	25	
	NUMBER OF POINTS	100%	165	

08. Performance Assessment of Construction of Community Gr

NO	PERFORMANCE ASSESSMENT	V	ALUE
	PERFORMANCE ASSESSMENT	%	POINT
A.	CONFORMITY OF CONSTRUCTION	21%	34
	IMPLEMENTATION PERFORMANCE	21/0	51
Β.	GREEN CONSTRUCTION PROCESS	55%	90
C.	GREEN SUPPLY CHAIN	25%	41
	NUMBER OF POINTS	100%	165

09. Performance Assessment of Utilization of Community Gree

NO	PERFORMANCE ASSESSMENT	VALUE	ALUE
		%	% POINT
A.	GREEN ENVIRONMENT ORGANIZATION AND GOVERNANCE		
1.	Community Adherence to Green Norms	54.5%	90
2.	Environmental Conservation Ordinances	45.5%	75
	NUMBER OF POINTS	100%	165

10. Performance Assessment of Demolition of Community Gree

NO	PERFORMANCE ASSESSMENT	VALUE	
	FERFORMANCE ASSESSMENT	%	% POINT
A.	MATERIAL MANAGEMENT	54.5%	90
B.	ENVIRONMENTAL FOOTPRINT RECOVERY	45.5%	75
	NUMBER OF POINTS	100%	165

11. Performance Assessment of Planning of Green Area

NO	PERFORMANCE ASSESSMENT	VALUE	
	FERFORMANCE ASSESSMENT	%	POINT
Α.	IMPROVING THE WELFARE OF THE LOCAL POPULATION	10%	16
в.	IMPROVEMENT OF INFRASTRUCTURE AND FACILITIES SERVICES IN THE REGION	16%	27
C.	IMPROVEMENT OF INFRASTRUCTURE AND FACILITIES SERVICES IN THE REGION	23%	38
D.	REDUCTION OF THERMAL IMPACTS ON OTHER REGIONS IN THE DRY SEASON	8%	14
E.	REDUCTION OF INFRASTRUCTURE AND FACILITIES BURDEN	32%	52
F.	USE OF ENVIRONMENTALLY FRIENDLY MATERIALS	11%	18
	NUMBER OF POINTS	100%	165

12. Performance Assessment of Construction of Green Area

NO	PERFORMANCE ASSESSMENT	VALUE	
		%	POINT
A.	CONFORMITY OF CONSTRUCTION	24.2%	40
	IMPLEMENTATION PERFORMANCE	27.270	10
В.	GREEN CONSTRUCTION PROCESS	58.2%	96
C.	GREEN SUPPLY CHAIN	17.6%	29
	NUMBER OF POINTS	100%	165

13. Performance Assessment of Utilization of Green Area

NO	PERFORMANCE ASSESSMENT	VALUE	ALUE
	FERFORMANCE ASSESSMENT	%	POINT
A.	ORGANIZATION AND GOVERNANCE OF GREEN	49%	81
	MAINTENANCE OF GREEN AREA PERFORMANCE AT THE TIME OF UTILIZATION	<mark>51%</mark>	84
	NUMBER OF POINTS	100%	165

14. Performance Assessment of Demolition of Green Area

NO	PERFORMANCE ASSESSMENT	VALUE	
	FERFORMANCE ASSESSMENT	%	POINT
A.	DISPOSAL MATERIAL MANAGEMENT	55%	91
В.	ENVIRONMENTAL SITE RECOVERY	45%	74
	NUMBER OF POINTS	100%	165

15. Performance Assessment of Utilization of Existing Green A

NO	DEDEODMANCE ASSESSMENT	VALUE	
	PERFORMANCE ASSESSMENT	% POINT	
A.	GREEN AREA ORGANIZATION AND GOVERNANCE	48%	79
B.	GREEN AREA RETROFITTING CONSTRUCTION PROCESS	7%	11
C.	MAINTENANCE OF GREEN AREA PERFORMANCE DURING UTILIZATION	45%	75
	NUMBER OF POINTS	100%	165

16. Performance Assessment of Demolition of Exisiting Green Area

NO	PERFORMANCE ASSESSMENT	VALUE	ALUE
	PERFURNANCE ASSESSMENT	%	% POINT
A.	DISPOSAL MATERIAL MANAGEMENT	55%	91
В.	ENVIRONMENTAL SITE RECOVERY	45%	74
	NUMBER OF POINTS	100%	165

2nd Presentation

Building Energy Policy and Case Studies on How Energy Service Companies Can Contribute Towards The Delivery of Energy Efficiency in Buildings

Mr. Zulkifli Zahari

President, Malaysia Association of Energy Service Companies (MAESCO)

(Pertubuhan Syarikat Syarikat Perkhidmatan Tenaga Malaysia) Malaysia Association of Energy Service Companies

Building Energy Policy and Case Studies on How Energy Service Companies Can Contribute Towards The Delivery of Energy Efficiency in Buildings.

00

Ar. Zulkifli Zahari

4.0

898

GOVERNMENT INITIATIVES OF ENERGY EFFICIENCY INVOLVING BUILDINGS IN MALAYSIA

INITIATIVES	YEAR
Malaysian Industrial EE Improvement Project (MIEEIP)	2000-2007
Efficient Management of Electrical Energy Regulation (EMEER)	2008
National EE Action Plan (NEEAP)	2016-2025
Building Sector EE Project (BSEEP)	2011-2016

Policy/Regulatory Issues

Under Attention and Review by Stakehoders

- No strong integrated energy policy or strategy by GOM to guide activities and investments for EE in Buildings.
- Statements on EE in 11th Malaysia Plan are general and without distinct targets. 12th Malaysia Plan (2021-2025) not tabled.
- The current voluntary code of practice for EE building design, MS 1525:2007, has not yet been made mandatory incorporated into the Uniform Building Bylaws (UBBL) despite various efforts to this end over the last 5 years.
- There are no regulations or mandatory legislation in place to support Energy Efficiency in the building sector
- Subsidized energy prices skew the market, and furthermore it is not clear that electricity tariffs give enough incentive for spontaneous EE project development and implementation
- There is no clear system to monitor, gather, analyze and disseminate information on developments and progress on energy
 efficiency. This hampers not only awareness in general but also the development of effective policies and targets, as well as
 making it impossible to assess whether or not existing initiatives are successful or not and thus whether or not to continue
 funding, strengthen it, or redirect it to other, more effective, measures

(Pertubuhan Syarikat Syarikat Perkhidmatan Tenaga Malaysia) Malaysia Association of Energy Service Companies

MS 1525

Energy Efficiency and Use of Renewable Energy in Non Residential Buildings (Update 2019)

JULY 2021

00

MALAYSIAN STANDARD

Energy efficiency and use of renewable energy for non-residential buildings - Code of practice (Second revision)

ICS: 91.040.01

Descriptors: energy efficiency, renewable energy, non-residential, buildings, code of practice, energy

© Copyright 2014 DEPARTMENT OF STANDARDS MALAYSIA

MS 1525:2014

PURPOSE OF THE STANDARDS

To encourage the design of new and existing buildings so that they may be constructed, operated and maintained in a manner that reduces the use of energy without constraining the building function, nor the comfort or productivity of the occupants and with appropriate regard for cost considerations.

To provide the criteria and minimum standards for energy efficiency in the design of new buildings, retrofit of existing buildings and provide methods for determining compliance with these criteria and minimum standards.

To provide guidance for energy efficiency designs that demonstrate good professional judgement and exceeds minimum standards criteria.

SCOPE OF STANDARDS

The Malaysian Standard sets forth the requirements for the effective use of new and existing buildings for human occupancy, covering

- ✓ passive design strategies
- ✓ electric power and distribution,
- ✓ lighting,
- ✓ air conditioning,
- building envelope and
- control system for energy management.

The Malaysian Standard covers new and existing buildings such as offices, hotels, shopping complexes and department stores as well as those portions of factory and industrial buildings that are used primarily for human occupancy.

Malaysia Association of Energy Service Companies

GREEN BUILDING TOOLS IN MALAYSIA ADOPTING MS 1525

00

-GREEN BUILDING INDEX -GREEN RE -My CREST

898

MAESCO Pertubuhan Syarikat Syarikat Perkhidmatan Tenaga Malaysia Walaysia Besociation of Energy Service Companies

MAESCO

FIGURE 8: MYCREST WEIGHTING ON MAIN CRITERIA

Service

EFFICIENT MANAGEMENT OF ELECTRICAL ENERGY REGULATION 2008 (EMEER 2008)

8

EMEER 2008

EFFICIENT MANAGEMENT OF ELECTRICAL ENERGY REGULATIONS 2008

Applicable to:

Any installation which receives electrical energy from a licensee or supply authority– Consume equal or exceeding 3,000,000 kWh any period of 6 consecutive months Installation worked or operated by a private installation licensee– Generate equal or exceeding 3,000,000 kWh any period of 6 consecutive months

MAESCO (Pertubuhan Syarikat Perkhidimatan Tenaga Malaysia Malaysia Association of Energy Service Companies

No of Company Appointed REEM

Building Sector Energy Efficiency Project (BSEEP)

00

U N D P

4.0

Pertubuhan Syarikat Syarikat Perkhidmatan Tenaga Malaysia, Malaysia Association of Energy Service Companies

BSEEP Achievements

88

Ν

D

Fig. 4: BSEEP - Buildings Sector Forecast Energy Annual Savings & Annual CO₂ Emission Reductions

2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025

Year

Energy Savings, GWh
CO2 Emission Reductions, ktons

THE NEED FOR A DEDICATED BUILDING SECTOR ENERGY EFFICIENCY REGULATION

- Implementing Agency
- Data collection and establish Database
- Building Energy labelling
- Compliance with prescribed Building Energy Intensity
- Building Energy Audits
- Reporting
- Penalties for non-compliance

EPC Fund for EE Project

News.

RM200 MIn EPC Fund To Boost Energy-Efficient Projects

PUTRAJAYA, Aug 16 (Bernama) -- The RM200 million Energy Performance Contracting Fund (EPC Fund) is now available for energy service companies (ESCOs) to implement energyefficient projects in the country, said Energy, Green Technology and Water Minister, Datuk Seri Dr Maximus Ongkili.

He said the fund was provided by Malaysia Debt Ventures Bhd, a subsidiary of Finance Ministry with a credit guarantee fund support of RM12 million from the ministry and the United Nations Development Programme-Global Environmental Facility.

"The establishment of the fund was approved during the first Green Technology and Climate Change Meeting 2017, which was chaired by Prime Minister Datuk Seri Najib Tun Razak on March 2 this year.....

Γĥ

SUBSCRIBE

FOR

FISCAL INCENTIVES

Pioneer Status (PS) with tax exemption of 100% of statutory income for 10 years
 Investment Tax Allowance (ITA) of 100% on qualifying capital expenditure incurred within a period of 5 years to be utilized against 100% of the statutory income for each year of assessment (Through Energy Performance Contracting (EPC) Services Activity)
 ELIGIBLE COMPANIES

Companies which incur capital expenditure for conserving energy for own consumption ITA of 100% on qualifying capital expenditure incurred within a period of 5 years to be utilised against 100% of the statutory income for each year of assessment

> ALL APPLICATION OF EE INCENTIVES SHALL APPLY THROUGH MIDA

GENERAL CRITERIA OF EE ITA EVALUATION

Energy Efficiency

Ex 1: Chiller replacement with high efficient chiller
Ex 2: Application of VSD at pump and motor

Suruhanjaya Tenaga

Energy Commission

ଞ୍ଜିତ୍ତ

Energy Conservation Ex 1: Heat pump application
Ex 2: Heat Recovery
Ex 3: Co-Generation

For Lighting type of project, under LHDN and MOF code of definition, it was not categorized as CAPEX as the nature of lighting to be replaced yearly basis (consumable), thus, lighting will not be considered under the existing ITA.

Years

 $ROI \le 10$

95

BSEEP DEMONSTRATION PROJECT

No.	Demonstration Project	Building Type	Tentative Energy Efficiency Technology /Technique to be Demonstrated	Estimated Annual Energy Savings kWh
1	Design and Construction of Nurses College at Parit Jaya	Institutional	Application of insulated facades and roof, window shading and ID design for maximum daylight use and maximum visual comfort, use of VRV split A/C systems, airtight building, high efficiency lighting system controlled according to occupancy and daylight availability.	711,750
2	Design and Construction of Government Health Clinic & Quarters at Nilai, Seremban	Institutional/ Residential	Strategic layout of A/C zones and naturally ventilated zones for reduced A/C load and reduced risk of humidity and mold growth, insulated facades and roof, façade, shading and ID design for maximum daylight use and maximum visual comfort, high performance glazing, use of VRV split A/C systems, airtight building with CO ₂ control of ventilation air inlet, high efficiency lighting system controlled according to occupancy and daylight availability, individual fluorescent desk lamps.	209,625
3	Design of New UTM Building, Jl. Semarak	Institutional/ Office	Building orientation, insulated facades and roof, façade, shading and ID design for maximum daylight use and maximum visual comfort, low E glazing, design of staircases for reduced use of lifts, high performance chiller, low pressure ventilation system and AHU's with VAV, high efficiency pumps, motors and AHU fans, airtight building with CO ₂ control of ventilation air inlet, high efficiency lighting system controlled according to occupancy and daylight availability, individual fluorescent desk lamps.	1,935,000
4	Retrofit of JKR Blok F Building	Office	Installation of a high efficiency lighting system controlled according to occupancy and daylight availability, installation of a new internal shading system for improved daylight availability and improved visual comfort, personal fluorescent desk lamps, weather stripping of windows and doors for reduced infiltration of outside air, improved fans and fan motors, high EE pumps, implementation of awareness program to improve energy performance.	1,520,000
5	Retrofit of Prime Minister's Office	Office	Optimization of the Building and Energy Management System for optimal energy performance and user comfort, adjustment and optimization of the performance of the AHUs with fans and motors, rewiring of wiring of the lighting system in offices towards the facade so that daylight controls can be installed, installation of motion controls of lighting in chosen areas of the building, use of fluorescent task lights in offices towards the façade to reduce the use of general office lighting, implementation of an awareness program to improve energy performance,	4,800,000
6	Retrofit of Ministry of Natural Resources and Environment's Building	Office	Optimization of the Building and Energy Management System for optimal energy performance and user comfort, adjustment and optimization of the performance of the AHUs with fans and motors, rewiring of wiring of the lighting system in offices towards the façade so that daylight controls can be installed, installation of motion controls of lighting in chosen areas of the building, use of fluorescent task lights in offices towards the façade to reduce the use of general office lighting, implementation of an awareness program to improve energy performance.	4,800,000

Service

No.	Demonstration Project	Building Type	Tentative Energy Efficiency Technology /Technique to be Demonstrated	Estimated Annual Energy Savings kWh
7	Design and Construction of New Building of Ministry of Trade and Industry	Office	Building orientation, use of vegetation, use of water body, energy efficient transport/lift system, insulated facades and roof, façade, shading and ID design for maximum daylight use and maximum visual comfort, high performance glazing, high performance chiller, low pressure ventilation system and AHU's with VAV, high efficiency pumps, motors and AHU fans, high performance lifts with electricity regeneration, airtight building with CO ₂ control of ventilation air inlet, high efficiency lighting system controlled according to occupancy and daylight availability. Image/impact of Malaysia's seriousness on sustainability to potential foreign investors.	3,800,000
8	Design and Construction of Housing Estate, Klang Valley	Residential	Building orientation, shading of walls via window overhang and other measures, use of improved glazing with less heat transmission, use of vegetation around the building, use of water bodies, insulated walls and highly insulated roofs, use of VRV split A/C systems, implementation of an airtight building envelope, design of windows and ventilation openings for optimal natural ventilation when the climate allows for this, use of efficient lighting systems, installation of energy efficient fridges and energy efficient washing machines, installation of solar water heaters.	550,000
9	Design and Construction of New Office Building of Putra Perdana	Office	Building orientation, insulated facades and roof, façade, shading and ID design for maximum daylight use and maximum visual comfort, high performance glazing, design of staircases for reduced use of lifts, high performance chiller, low pressure ventilation system and AHU's with VAV, high efficiency pumps, motors and AHU fans, airtight building with CO_2 control of ventilation air inlet, high efficiency lighting system controlled according to occupancy and daylight availability, individual LED desk lamps.	2,250,000
10	Design and Construction of New Office Building of Sime Darby	Office	Building orientation, insulated facades and roof, façade, shading and ID design for maximum daylight use and maximum visual comfort, high performance glazing, high performance chiller, low pressure ventilation system and AHU's with VAV, high efficiency pumps, motors and AHU fans, high performance lifts with electricity regeneration, airtight building with CO_2 control of ventilation air inlet, high efficiency lighting system controlled according to occupancy and daylight availability.	2,250,000
TOTAL (kWh savings)		22,826,375		
TOTAL CO ₂ (ton CO ₂ eq)				15, 613
NOTES: Electricity price = 0.4 MYR/kWh (USD 0.11/kWh); CO ₂ Factor = 0.684 ton/MWh				

ESCO's Contribution towards Delivering Energy Efficient Buildings

00

Malaysia Association of Energy Service Companies

4.0

COMMON Options for EPC MODEL

1. GUARANTEED SAVING

• The loan goes on the client's balance sheet

2. SHARED SAVING

 The loan goes on ESCO's balance sheet

88

BOTH PERFORMANCE GUARANTEED!

EPC -SHARED SAVING

838

Case Study 1

<u>Telco Company, Malaysia by Factor Four Technology Sdn. Bhd – Shared Savings Contract for 10 years</u>

BEFORE RETROFIT – 591 kW

- Air Cooled Chillers operating
 - 300 kW +
- Additional pumps in operation to counter valve problems
 - 48 kW +
- Measured CHWS Temperature Summary
 - Ave CHWS Temp June 2003 = 9 Deg C

AFTER RETROFIT – 164 kW

- Measured Average Power Consumption by Each Equipment (Water Cooled Chiller) in April 2001
- 400 RT Chiller =140 kW (Max 215 kW)
- CHW Pump = 8.1 kW (Max 8.9 kW)
- CW Pump = 7.5 kW (Max 9.2 kW)
- Cooling Towers = 9 kW (Max 19 kW)
- <u>Measured Power Consumption Summary</u>
 - Ave Ch Plant kW for March 2006 = 160 kW (Max 180 kW)

88

- <u>Measured CHWS Temperature Summary</u>
 - Ave CHWS Temp March 2006 = 7.5 Deg C

Measured Chiller Plant Efficiency : 0.60 kW/ton

Measured Chiller Plant Efficiency : 2.0 kW/ton

Case Study 2

Universiti Teknologi Malaysia

MAIN RESULTS:

- a) Saving of 318.00 kW or **39%**
- b) Lighting intensity Watt/m² reduced from 24.7 to 7.5 reduction of 70%
- c) kWh per annum /area (kWh/m²) from 169 to 99 reduction of 58%
- d) Improvement in comfort condition of the library
- e) Savings worth RM 340,000 per annum

The electronic ballast was selected based on this criteria:

- 1. Total Harmonic Distortion (THD) of less than 20% or 10% depending on the model of the ballast.
- 2. Power factor > 95%
- 3. Lamp current Crest Factor less than 1.7
- 4. Minimum starting temperature of -20°F to 50°F
- 5. Minimum detectable flicker high frequency

The retrofit works undertaken to improve the efficiency were:

- Replaced old oversized motor with new Super-E type
- Replace old fan and motor pulleys with optimally designed size
- Alignment of pulleys to reduce transmission losses
- Electrical connection to motor and necessary adjustment of over load relay setting.
- Control and Monitoring

Total Savings Calculation for Phase I, II and III

Annual Savings = RM 340,092.84	[20]
Total Monthly Savings : RM 28,341.07	
Average monthly kWh savings and max. demand savings, therefore : <u>kWh Savings = RM 22.839.50 per month</u> Max. demand Savings = RM 5501.57 per month	nth
N = (20 x 15.5) + (4 x 9) + (4 x 8) = 378 hours per month	[19]
To calculate average savings per month, we will use 20 weekdays @ 15.5 working hours, 4 Saturdays @ 9 working hours Sundays @ 8 working hours, which makes:-	s, and 4
where N is the number of operating hours per month.	
Savings = kWh savings + Max. demand savings = (318 kW x N x 0.19 RM/kWh) + (318 x 17.3 RM/kW)	[18]
calculation of savings per month can be expressed as follows:-	
kWh Cost = 0.19 RM/kWh Peak kW Cost = 17.30 RM/kW/month	[16] [17]
Power (kW) Savings The total savings from Phase 1, Phase II and Phase III > Total Savings = [5] + [8]+ [11] + [13] kW = 318 kW With the cost of electricity at:-	[15]

688

BENEFITS WORKING WITH ESCOs

- ESCO is a one-stop solution provider which aims to bring together capital and technology to develop and implement turnkey solutions that enable companies to reduce their energy consumption and operating costs while meeting sustainability goals:
 - No upfront investment for the Host on Shared Savings Basis.
 - Enduring Operating Cost Savings.
 - Asset Upgrade and Value Uplift.
 - Carbon Emissions Reductions/Compliance with Building /Energy Management Regulation.
 - Corporate Social Responsibility agenda.
 - Highest Performance Standards with equipment and technology that is commercially proven and with warranties and guarantees as to the performance of contractors and suppliers.
 - Savings Cover the Investment Cost.
 - Risk Transfer.
 - Service payment only starts when the equipment is fully installed and commissioned.
 As a result, the Host transfers all the procurement and construction risks to ESCO
 - Flexible Service Payment including shared savings, progressive payment, buy-out clause etc.
 - Collateral or Guarantee Requirement subject to a credit risk assessment funding for the project without any collateral or corporate/directors guarantee from the Host.

Training Programs conducted by MAESCO

TRAINING PROGRAMS	DURATION
Energy Management Training Course (EMTC) including EE Project Presentation and Interview	5 Days
Certified Energy Auditor Training Course (CEA)	4 Days
Accredited Energy Measurement and Verification (AEMVP)	4 Days
Technical and Professional Practice courses for CPD and capacity Building Purposes	1/2 to 2 days

MAESCO a founding member of Asia-Pacific ESCO Industry Alliance (APEIA)

On 17 June 2019, a new milestone was set when our President Ar Zulkifli Zahari signed a Joint Statement among the eight (8) national ESCO associations of Asia-Pacific to form APEIA. Besides MAESCO, the other seven (7) country ESCO associations of APEIA are EMCA (China), JAESCO (Japan), PE2 (Philippines), SEAS (Singapore), TESA (Taiwan), AEEE (India) and KAESCO (Korea).

The primary objectives of APEIA are:

- To liaise with national and international ESCO, EE industry and business organizations for the benefit of Members and to represent the Association at international organizations, networks, meetings and forums;
- To provide a regular forum for discussion, exchange of views and information on matters of common interest among Members and organizations/associations with similar aims;
- To organize educational programmes, training and professional examinations on subjects relating to EE systems, practices and policies, and related subjects; and,
- 4. To maintain a directory of Member organizations promoting EE and ESCO practices and policies.

APEIA

Asia-Pacific ESCO Industry Alliance

We look forward to synergise with all ESCO organisations of APEIA to achieve the 7 deliverables as depicted below.

Pertubuhan Syarikat Syarikat Perkhidmatan Tenaga Malaysia Malaysia Association of Energy Service Companies

Thank You

(Pertubuhan Syarikat Syarikat Perkhidmatan Tenaga Malaysia) Malaysia Association of Energy Service Companies

9, Jalan SS7/10, 47301, Kelana Jaya. Petaling Jaya, Selangor Darul Ehsan Tel: 03-78730784/5/6 Fax: 03-78730769 Email: training@maesco.org.my Website: www.maesco.org.my

3rd Presentation

How Industries can Best Support Building's Policies Development Efforts toward Reaching NDC Targets?

Mr. Matthieu Caille

Consultant in Energy Efficiency & Low Carbon Development, GreenBuilding SAS / Global Buildings Performance Network

Webinar on Role of Industry in Buildings Policy Development

Prepared by : Matthieu Caille

Created July 2021

How can industries best support building's policies development efforts toward reaching NDC targets?

Matthieu Caille (Mamat) 31, French citizen Mechanical Engineer Based in Yogyakarta / 8 years in Indonesia

Presentation Agenda

- Indonesian buildings: context
- Toward a more holistic and comprehensive supply chain of buildings
- Industry support: Inform policy makers on policies development & implementation gaps
- Industry support: Inspire policies reform & market growth through sharing best practices
- Industry support: Leverage and accelerate market transformation through activities/capacities alignment and coordination

70% of the Indonesian population will live in cities by 2045.

(World Banl

Indonesian Buildings Context: Slow and challenging improvement

Urban sprawl in Indonesia: example of the urban development in Yogyakarta

Toward a **more holistic and comprehensive approach** of the building's supply chain

- Policies Development/Reform
- Should be <u>holistic</u>

Distributed along the supply chain

Figure 4: EN15978:2011 buildings standards referring to the different building stages of the life-cycle of buildings

GBPN-HIDUP's Coalition approach

Breaking barriers between public and private stakeholders Creating safe-space to enable policies reform

Public / Private stakeholders Focus Group Discussion toward building regulation reform

Engagement with local actors: Understanding gaps and policy ask

Webinar: Industries decarbonization champions (industries) Building materials manufacturer / developer / ESCO

Inform policy makers on policies development & implementation gaps.

Adopting a **strong participative approach** with local actors *throughout policy reform processes* to:

Develop a **common understanding** of the goals and objectives achieved from transitioning

Comprehend challenges and capacity building needs

Facilitate regulation adoption and improve compliance rates

Enhance regulations adoption through collaborative regulation design & drafting

- Status-quo and capacity mapping
- Raising awareness and knowledge sharing
- Technical and administrative guidelines development
- Multi stakeholder consultations

Acceptance by the private sector:

- Building practitioners
- Industries (building materials manufacturers)
- Associations
- Building owners

Greater ownership among public authorities:

- Across key ministries
- Throughout key city / regency services

Inspire policies reform & market growth through sharing best practices.

Leverage and accelerate market transformation through activities/capacities alignment and coordination among peers.

The <u>up-take</u> of sustainable and decarbonized strategies and solutions within the industries and local experts (developers, designers, builders, utility providers) best practices **highly depends on each other's motivation.**

In line with the government commitment to address climate change issues, as stipulated within the Indonesia Nationally Determined Contribution (NDC), **such initiatives should be:**

- Recognized
- socialized and
- encouraged.

THANK YOU...

For joining us to drive change together,

Toward a sustainable and low carbon future in Indonesia

0

Consult our web site: www.gbpn.org

Send us an email: info@gbpn.org

4th Presentation

The Role of Industry in Buildings Policy Development

Mr. Christopher C. Seeley

Energy Efficiency & Climate Change Expert and CEO, Climate Change Solutions (ESCO in Thailand)

ASEAN-IEA Webinar: The Role of Industry in Buildings Policy Development

Hosted by: ASEAN Centre for Energy

Organised by: International Energy Agency, the ASEAN Centre for Energy, and the ASEAN Secretariat.

With support from: ASEAN-Australia Development Cooperation Program Phase II (AADCP II)

22 July 2021

Christopher C. Seeley

ccseeley@climate-change-solutions.net

Good Ideas Make Everything Better

A specialist firm providing advisory, project development, and project implementation services in the areas of Energy Efficiency and small-scale Renewable Energy projects across the ASEAN region since 2010.

OF LEARNING 2010 – today We offer turnkey energy efficiency projects using traditional ESCO delivery models (guaranteed savings/performance and Energy Purchase Agreements) with the ability to invest into projects on long-term repayment structures.

Energy Efficiency Technologies & Solutions

- HVAC systems (VRV, Chillers, absorption chillers)
- Heat Pump systems
- Co-generation/Tri-generation systems (waste heat recovery)
- Building Energy Management Systems (BEMS)
- Energy Recovery Ventilation (ERV) systems
- LEDs & Lighting Control systems
- Solar

LNG Gas Plant (for Tri-gen)

Magnetic Bearing Oil Free Chiller

High Efficiency VSD Chiller

Air-Source & Water-source Heat Pumps, CO2-based Heat Pump

Waste Heat Recovery Boiler

Gas engine generator/absorption chiller

4-Star Resort Chonburi, Thailand

#	Project Description	Total Contract Value (US\$)	Term (Yrs)	
1	Magnetic bearing (Oil-free) Chiller		3	
2	Heat Pump System (Water-Water)			
3	Solar PV Rooftop	~700,000		
4	Lighting - LEDs			

5-Star Resort Samui, Thailand

ltem	Solutions	Contract Value (US\$)	Term (Yrs)
1	HVAC system		
2	Heat Pump System	~1,000,000	7
3	Occupancy Based Control System for guestrooms		

Background Information

Total Electricity Consumption in Thailand 2012-2018 (by Building Type)

Average of Energy Reduction Achieved (%)

Payback Period (Years)

Other

BMS

Hot Water

Lighting

HVAC

Proportion of Total Savings Per ECM Category

Investment 'Opportunity'

Building Type	Total 'Size' (m2)	Total Energy Reduction (MWh/annum)	Total GHG Reduction (mtCO2e/annum)	Total Reduction in Energy Cost (US\$/annum)	Total Investment (US\$)	Payback (Years)
Hotel						
Retail	29,580,450	1,091,275	618,098	123,208,470	429,708,338	3.49
Office						

Objective:

To reduce Greenhouse Gas (GHG) emissions by scaling up private sector 'investment' (participation/commitment) in energy efficiency in both commercial buildings and industrial buildings

- 1. SMEs (Building Owners) High Potential
 - Large opportunity for Energy Efficiency / Energy Reduction in buildings in Thailand (as a group represent ~50% of total electricity consumption)
 - Many programs have focused on Designated Buildings and Factories (very large energy consumers) but not on SMEs
 - Have a need for ESCO services (both external expertise and financing options)
- 1. Banks and Financial Institutions an essential group to provide loans (to ESCOs) so that they can invest into energy efficiency projects.
- 2. Model of preference/highest potential Shared savings, leasing, 'chauffage' (EPA)

Initiatives/Policies/Partnerships that will deliver:

- **1.** Greater participation by Private Financial Institutions
 - Identify and establish other sources of capital for ESCOs Regional banks, (VC, PE, FinTech)
- 2. Risk sharing facilities (to enable ESCOs to satisfy bank requirements and access loans more easily):
 - Portfolio guarantees (for banks)
 - Individual project guarantees
 - Partial credit guarantees
 - Insurance policies
- 3. Establish a grant facility to co-finance the costs of Investment Grade Audits (IGA)
 - Build a pipeline of projects (no IGA = no projects)
 - Build capacity of ESCOs to undertake IGAs ('bankable' projects)
 - Build capacity of building owners to understand the value of an IGA (investment decision)

Thank you

Climate Change Solutions Co Ltd.(CCS)

634/1 Pracha Uthit Rd., Wangthonglang, Bangkok 10310 Tel: +66 87 86 0880 Christopher Seeley: <u>ccseeley@climate-change-solutions.net</u>

Q&A Session

Moderator

Dr. lan Hamilton

Associate Professor, UCL Energy Institute & International Energy Agency

Mr. Ir. Mochammad Sulton Sahara, M.Eng.

Certain Functional Officer, Associate Expert on Building and Housing, Directorate General of *Cipta Karya*, Ministry of Public Works and Public Housing, Indonesia

Mr. Zulkifli Zahari

President, Malaysia Association of Energy Service Companies (MAESCO)

Mr. Matthieu Caille

Panelists

Consultant in Energy Efficiency & Low Carbon Development, GreenBuilding SAS / Global Buildings Performance Network

le Mr. Christopher C. Seeley

> Energy Efficiency & Climate Change Expert and CEO, Climate Change Solutions (ESCO in Thailand)

Closing Remarks

Mr. Muhammad Indra Wahyudin Officer, Energy and Minerals Division, ASEAN Secretariat

Roadmap Survey

Roadmap for Energy Efficient Buildings and Construction - ASEAN

The energy demand of the ten countries of the Association of Southeast Asian Nations (ASEAN) has grown by 60% over the past 15 years and is projected to further increase by 80% over the next 25 years. Cooling is the fastest-growing end use in buildings, as energy demand for cooling more than tripled between 1990 and 2018.

This project aims to help address the pressures of increasing energy demand and emissions and improve collaboration between stakeholders in the region, by developing an ASEAN Energy Efficient Buildings and Construction Roadmap and an ASEAN Sustainable Cooling Roadmap.

The road mapping process will engage key stakeholders and assist them to develop and implement strategies, plans, policies and programmes to reduce the energy demand of buildings, construction sectors and cooling.

The roadmaps are intended to assist policy makers when designing their national buildings and climate strategies, as well as organisations in designing their medium-term and longterm policies and determining their investment allocations.

THANK YOU