Global Hydrogen Review: Assumptions annex

International Energy Agency

INTERNATIONAL ENERGY AGENCY

The IEA examines the full spectrum of energy issues including oil, gas and coal supply and demand, renewable energy technologies, electricity markets, energy efficiency, access to energy, demand side management and much more. Through its work, the IEA advocates policies that will enhance the reliability, affordability and sustainability of energy in its 30 member countries, 8 association countries and beyond.

Please note that this publication is subject to specific restrictions that limit its use and distribution. The terms and conditions are available online at www.iea.org/t&c/

This publication and any map included herein are without prejudice to the status of or sovereignty over any territory, to the delimitation of international frontiers and boundaries and to the name of any territory, city or area.

Source: IEA. All rights reserved. International Energy Agency Website: www.iea.org

IEA member countries:

Australia Austria Belgium Canada Czech Republic Denmark Estonia Finland France Germany Greece Hungary Ireland Italy Japan Korea Luxembourg Mexico Netherlands New Zealand Norway Poland Portugal Slovak Republic Spain Sweden Switzerland Turkey United Kingdom United States

The European Commission also participates in the work of the IEA

IEA association countries:

Brazil China India Indonesia Morocco Singapore South Africa Thailand

led

Global Hydrogen Review 2021: Assumptions

This annex collects the various assumptions that underpin the analyses throughout the *Global Hydrogen Review 2021*. For technologies, global averages are presented. However, several analyses in the report present regional examples, for which costs will vary with material and labour inputs and differ from the global average. These input parameters reflect choices made by the IEA on the basis of different sources of information consulted.

General Inputs

- All costs in USD (2019)
- Discount rate: 5%.
- Water costs are not considered.
- NZE = Net Zero Emissions by 2050 scenario

Fossil fuel prices

		Gas price (USD/MBtu)		Stear	m coal price (USD	/tonne)
Region	Today	NZE 2030	NZE 2050	Today	NZE 2030	NZE 2050
China	6.3	5.7	5.0	72	53	45
European Union	1.8	3.8	3.4	61	55	47
Japan	6.9	5.4	5.1	78	58	50
United States	2.3	2.1	2.2	45	24	22
Minimum	0.9	0.9	0.9	40 [*]	24	22
Maximum	7.0	6.8	6.9	78	58	50

* The minimum value for steam coal price is based on regions that are not shown in the table.

Notes: MBtu = million British thermal units. Natural gas prices are weighted averages expressed on a gross calorific-value basis. The US natural gas price reflects the wholesale price prevailing on the domestic market. The European Union and China gas prices reflect a balance of pipeline and liquefied natural gas (LNG) imports, while the Japan gas price is solely LNG imports; the LNG prices used are those at the customs border, prior to regasification. Steam coal prices are weighted averages adjusted to 6 000 kilocalories per kilogramme.

Renewable electricity prices and full load hours

Solar PV

	L	COE (USD/MW	′h)	Full load hours (h)		
Region	Today	NZE 2030	NZE 2050	Today	NZE 2030	NZE 2050
Australia	37	21	14	2197	2333	2333
Chile	28	16	12	2899	2899	2899
China	20	14	11	2547	2547	2547
European Union	44	26	21	1393	1504	1504
India	25	15	11	2317	2549	2549
Japan	96	65	48	1473	1484	1484
Middle East	32	18	13	2722	2806	2806
North Africa	50	27	19	2523	2680	2680
United States	40	24	18	2177	2382	2485

Offshore wind

	L	COE (USD/MW	′h)	Full load hours (h)		
Region	Today	NZE 2030	NZE 2050	Today	NZE 2030	NZE 2050
Australia	75	38	25	4190	4589	4988
Chile	111	57	37	4939	5409	5880
China	93	43	27	2898	3454	4011
European Union	56	29	19	4450	4883	5317
India	108	56	37	3224	3489	3755
Japan	137	70	46	3806	4169	4531
Middle East	127	79	52	3324	3353	3645
North Africa	126	72	48	3312	3577	3842
United States	110	56	37	4153	4549	4944

Onshore wind

	LCOE (USD/MWh)			Full load hours (h)		
Region	Today	NZE 2030	NZE 2050	Today	NZE 2030	NZE 2050
Australia	48	42	38	3334	3416	3498
Chile	44	35	30	3474	3841	4208
China	39	34	33	3130	3130	3130
European Union	33	29	27	3566	3634	3702
India	47	38	34	2465	2634	2804
Japan	107	87	75	2765	3028	3291
Middle East	55	48	45	3183	3233	3282
North Africa	61	54	51	3239	3239	3239
United States	33	29	27	3915	3999	4083

Note: Renewable electricity generation costs and full load hours for good resource conditions in a region or country.

CO₂ prices and costs

CO₂ prices

	CO ₂ price (USD/tCO ₂)			
Region	Today	NZE 2030	NZE 2050	
Advanced economies	20-27	130	250	
Selected emerging market and developing economies*	10	90	200	
Other emerging market and developing economies	0	15	55	

* Includes Russia, Brazil, China, and South Africa.

CO₂ transport and storage cost for CCUS

	(USD/tCO ₂)			
Region	Today	NZE 2030	NZE 2050	
United States	15	12	12	
Middle East	15	12	12	
Europe	56	33	33	
China	16	12	12	
Rest of the World	25	20	20	

Production pathways

Hydrogen

Technology	Parameter	Units	Today	NZE 2030	NZE 2050
Water electrolysis	CAPEX*	USD/kWe	1000-1750	400-440	320-340
	Efficiency (LHV)	%	64	69	74
	Annual OPEX	% of CAPEX	1.5 – 3	1.5 – 3	1.5 – 3
	Stack lifetime (operating hours)**	hours	50000	50000	50000
Natural gas reforming	CAPEX	USD/kW _{H2}	780	780	780
	Efficiency (LHV)	%	76	76	76
	Annual OPEX	% of CAPEX	4.7	4.7	4.7
Natural gas reforming w/CCUS	CAPEX	USD/kW _{H2}	1470	1470	1470
	Efficiency (LHV)	%	69	69	69
	Annual OPEX	% of CAPEX	4	4	4
	CO ₂ capture rate	%	95	95	95
Coal gasification	CAPEX **	USD/kWh2	1960	1960	1960
	Efficiency (LHV)	%	60	60	60
	Annual OPEX	% of CAPEX	5	5	5
Coal gasification w/CCUS	CAPEX ***	USD/kW _{H2}	2040	2040	2040
	Efficiency (LHV)	%	58	58	58
	Annual OPEX	% of CAPEX	5	5	5
	CO ₂ capture rate	%	95	95	95

* Electrolyser CAPEX includes the electrolyser system, electric equipment, gas treatment, plant balancing, and engineering, procurement and construction (EPC). In the case of electrolysers using solar PV and offshore wind, the cost of the inverter is discounted.

^{**} Stack lifetime can reach up to 95 000 h. The selected value (50 000 h) comes from IEA's analysis of the optimum economic lifetime, considering degradation issues.

^{***} For China, CAPEX is assumed to be 50% of the world average for coal gasification and 52% for coal gasification with CCUS.

Notes: 25-year lifetime and a 95% availability factor assumed for hydrogen production from natural gas, 25 year lifetime and 90% availability factor is assumed for the production of hydrogen from coal. Availability factors for electrolysis are based on the full load hours of electricity shown in the General inputs section. For water electrolysis, water costs and possible revenues from oxygen sales have not been considered in the cost analysis.

Hydrogen-based fuels

Haber – Bosch (Ammonia)

Parameter	Units	Today	NZE 2030	NZE 2050
CAPEX (including air separation unit)	USD/(tNH ₃ /y)	771	771	771
Annual OPEX	% of CAPEX	2.9%	2.9%	2.9%
Electricity consumption	GJ/t _{NH3}	2.2	2.2	2.2

Notes: 95% availability assumed for all equipment's. Assumed cost of hydrogen storage to achieve 8000h utilization rate: 3.3-4.9 USD/MWh H2.

Methanation (synthetic methane)

Parameter	Units	Today	NZE 2030	NZE 2050
CAPEX	USD/kW _{prod}	1000	840	500
Efficiency (LHV)	%	77	77	77
Annual OPEX	% of CAPEX	4	4	4
Variable O&M	USD/MWh _{prod}	4.8	4.0	2.4
Lifetime	years	30	30	30
Electricity consumption	GJe/GJprod	0.013	0.013	0.013

Notes: 95% availability assumed for all equipment's. Assumed cost of hydrogen storage to achieve 8000h utilization rate: 3.3-4.9 USD/MWh H2. Assumed cost of feedstock CO_2 : 30 USD/t CO_2 (biogenic), 150-450 USD/t CO_2 (DAC - today), 70-240 USD/t CO_2 (DAC - long term).

Fischer-Tropsch (synthetic diesel)

Parameter	Units	Today	NZE 2030	NZE 2050
CAPEX	USD/kWliquid	2330	1770	1000
Efficiency (LHV)	%	73	73	73
Annual OPEX	% of CAPEX	5	5	5
Variable O&M	USD/MWh _{prod}	5.9	4.7	2.3
Lifetime	years	30	30	30
Electricity consumption	GJe/GJliquid	0.018	0.018	0.018

Notes: 95% availability assumed for all equipment's. Assumed cost of hydrogen storage to achieve 8000h utilization rate: 3.3-4.9 USD/MWh H2. Assumed cost of feedstock CO_2 : 30 USD/t CO_2 (biogenic), 150-450 USD/t CO_2 (DAC - today), 70-240 USD/t CO_2 (DAC - long term)

Industrial applications

Steel

Route	Parameter	Units	Today	2030
Natural gas-based DRI-EAF	CAPEX	USD/tcrude steel	1087	-
	Annual OPEX	% of CAPEX	7.5%	-
	Electricity consumption	GJ/tcrude steel	2.9	-
	Natural gas consumption	GJ/tcrude steel	11.8	-
Natural gas-based DRI-EAF with CCUS	CAPEX	USD/tcrude steel	1169	-
	Annual OPEX	% of CAPEX	7.5%	-
	Electricity consumption	GJ/t _{crude steel}	3.3	-
	Natural gas consumption	GJ/tcrude steel	11.8	-
	CO ₂ capture rate	%	90	-
Hydrogen-based DRI-EAF	CAPEX	USD/tcrude steel	1784	1391
	Annual OPEX	% of CAPEX	7.5%	7.5%
	Electricity consumption	GJ/t _{crude steel}	16	15

Notes: 25-year lifetime and 95% availability assumed for all equipment. Hydrogen-based DRI-EAF parameters include the electrolyser costs (see Hydrogen table). The hydrogen requirement for this route is estimated to lie in the range of 47-68 kg/t of DRI, with the mid-point of this range used for the cost calculations. For the DRI-EAF routes, a 95% charge of DRI to the EAF is considered. An iron ore (58% Fe content) cost of USD 60/t and a scrap cost of USD 250/t is assumed for all process routes, regions and time periods. Costs of electrodes, alloys and other wearing components are considered as a part of the fixed OPEX.

Ammonia (NH₃)

Technology	Parameter	Units	Low	High
Natural gas SMR	CAPEX	USD/tNH₃	1910	1910
	Annual OPEX	% of CAPEX	2.5	2.5
	Gas consumption	GJ/t _{NH3}	32.1	32.1
	Electricity consumption	GJ/t _{NH3}	0.3	0.3
Natural gas ATR with CCUS	CAPEX	USD/tNH ₃	2110	2110
	Annual OPEX	% of CAPEX	2.5	2.5
	Gas consumption	GJ/t _{NH3}	27.9	27.9
	Electricity consumption	GJ/t _{NH3}	1.5	1.5
Technology	Parameter	Units	Today	NZE 2030
Electrolysis	CAPEX	USD/tNH ₃	2355	1234
	Annual OPEX	% of CAPEX	1.9 %	1.9 %
	Electricity consumption	GJ/t _{NH3}	36.0	33.5

Notes: 25-year lifetime and 95% availability assumed for all equipment. The electrolysis route parameters include the electrolyser costs (see Hydrogen table). The gas price assumptions for the low cost case is 2 USD/MBtu and for the high case 10 USD/MBtu.

Transport applications

Heavy-duty trucks

Technology	Parameter	Units	Today	2030 APS	2050 APS
All powertrains	Mileage	km/year	100 000	100 000	100 000
	Range	km	500	500	500
	Years of ownership	years	5	5	5
	Discount rate	%	10%	10%	10%
	Glider CAPEX	USD thousand	118	118	118
	Salvage value	% ¹	42	42	42
	Power	kW	350	350	350
FCEV	Fuel cell cost	USD/kW	376	181	60
	Hydrogen tank	USD/kWh	15.5	9.3	8
	Battery	kWh	3.3	3.3	3.3
	Fuel consumption	MJ/km	8.3	7	6.6
	Electric motor	USD/kW	55	42	35
	O&M	USD/km	0.1	0.1	0.1
	Delivered H ₂	USD/kg			
	price	-	5.5	3.4	2.9
Hydrogen refuelling station	Size	kg/day	550	934	2645
	CAPEX	USD/kg/day	2343	1200	900
	Lifetime	years	30	30	30
	Utilisation	%	10%- 30%	20%-50%	35%-75%
BEV	Battery cost	USD/kWh	328	119	60
	Battery size	kWh	820	791	705
	Fuel	MJ/km	4.92	4.75	4.23
	O&M	USD/km	0.1	0.1	0.1
	Base electricity price ²	USD/kWh	0.12	0.12	0.12
ICE (diesel)	Fuel	MJ/km			
	consumption		13.1	-	-
	Motor	USD/kW	118	-	-
	O&M	USD/km	0.16	-	-
	Diesel price	USD/Ige	1.51	-	-
ICE - Hybrid	Fuel consumption	MJ/km	-	7.6	7.6
	O&M	USD/km	-	0.16	0.16
	Syndiesel price	USD/Ige	-	1.87-3.06	1.21-2.29

¹ Percentage of total vehicle cost (CAPEX) equivalent to the glider and powertrain-specific components.

² Excluding costs of installing and operating dedicated charging infrastructure.

Notes: O&M = operation and maintenance.

Buildings applications

Space and water heating

Technology	Parameter	Units	Values
Buildings	Space heat demand	kWh/sq.m	60-100
	Water heat demand	kWh/year	800
	Floor area	sq.m.	100
All technologies	Lifetime years		15
	Operation & Maintenance	% of CAPEX/yr	3
Heat exchanger (district heat)	Efficiency	%	0.8-0.99
Electric resistance	Efficiency	%	1
Heat pump (air source)	Efficiency	%	2.5-4.5
	CAPEX*	USD/kW _{th}	400
Gas boiler	Efficiency	%	0.8-0.9
Gas heat pump	Efficiency	%	0.9-1.35
Chips and pellet stoves	Efficiency	%	0.5-0.85
Hydrogen boiler	Efficiency	%	0.85-0.95
	CAPEX*	USD/kW _{th}	250
Hydrogen hybrid heat pumps	Efficiency	%	2.2-3.2
	CAPEX⁺	USD/kWth	450
Hydrogen fuel cell	Efficiency (cogeneration) **	%	0.75-0.95**
	CAPEX*	USD/kW _{el}	3500
Grid electricity	PEF***	-	1.25-3.75
District heat	PEF***	-	1.1-1.33
Hydrogen	PEF***	-	1.75-3.8

*All CAPEX are for 2030, in the Announced Pledges Scenario. Average cost in the selected regions. **Cogeneration efficiency is the sum of thermal and electrical efficiency ***PEF: primary energy factor in 2020.

Notes. Ranges in efficiencies reflect technological variations.

Electricity generation

Co-firing in existing fossil thermal plants

Technology	Parameter	Units	Values
Natural Gas Combined Cycle plant	Modification to H2 combustion	USD/MWh _{th}	1.7
	LNG price	USD/MWh	20 - 29
	OPEX (excluding fuel)	USD/MWh _{th}	2
	Efficiency	%	51
Coal Ultra-Supercritical plant	Modification to NH3 combustion	USD/MWh _{th}	1.1
	Coal price	USD/MWh	7 - 14
	OPEX (excluding fuel)	USD/MWh _{th}	4
	Efficiency	%	44
Hydrogen fuel	Cost	USD/kg	1.5 – 2.5
Ammonia fuel	Cost	USD/t	300 - 500
CO ₂	cost	USD/t	82-130

Notes. CAPEX of the existing plant is not taken into account as the model considers initial investment as sunk cost. Shipping distance 10 000 km. For assumptions on liquefaction and shipping, see Hydrogen Transport section.

Hydrogen transport

Pipelines

Technology	Parameter	Units	Hydrogen	LOHC	Ammonia
Pipelines	Lifetime	years	30	-	
	Distance	km	Function of supply route		
	Design throughput	tH ₂ /day	100/500/1000		
	Inlet pressure	bar	80		
	Gas density	kg/m ³	6.4	-	-
	Gas velocity	m/s	15	-	-
	CAPEX/km	USD million/km	0.49/0.86/1.2 2		
	Utilisation	%	90%		
Retrofit pipeline	CAPEX/km	% of new built	25%		
Gas compression	Capacity	tH ₂ /day	10		
	CAPEX	MUSD	2.3		
	Annual OPEX	% of CAPEX	10		
	Electricity use	kWh/ka	1.9		

Notes: Transmission pipeline for hydrogen gas based on Baufumé (2013): Pipeline CAPEX (USD/km) = 4 000 000D² + 598 600D + 329 000; where D (internal diameter in cm) = $\sqrt{(F/v)/\pi^2 2^*100}$; v = gas velocity (m/s); F (volumetric flow in m³/s) = Q/ ρ ; Q = gas throughput (kg/s); ρ = gas density (kg/m3). Sources: Baufumé et al. (2013), "GIS-based scenario calculations for a nationwide German hydrogen pipeline infrastructure".

Seaborne transport

Technology	Parameter	Units	Liquefied hydrogen	LOHC	Ammonia
Ship ¹	Capacity/ship	t _{carrier}	11 000	110 000	26 000
	CAPEX/ship	USD million	412	76	50
	Ship speed	km/h	30	30	30
	No. of ships used		Function of distance		
	Boil-off rate ²	%/day	0.2%	-	-
	Flash rate ^{3e}	%	1%	-	-
Import terminal	Capacity/tank	tcarrier	3600	62000	57000
	No. of tanks	#	Based on days o	of storage needed loading frequency	for a given ship
	CAPEX/tank	USD million	320	35	97

Technology	Parameter	Units	Liquefied hydrogen	LOHC	Ammonia
	Electricity use	kWh/kgH₂	0.2	0.01	0.02
	Boil-off rate	%/day	0.1	-	-
Export terminal	Capacity/tank	tcarrier	3200	52000	35000
	No. of tanks		Based on days o	f storage needed oading frequency	for a given ship
	CAPEX/tank	USD million	290	42	68
	Annual OPEX	% of CAPEX	4%	4%	4%
	Electricity use	kWh/kgH ₂	0.61	0.01	0.01
	Boil off rate	%/day	0.1%	-	-
Liquefaction	Installed capacity	tH ₂ /day	Confidential	-	-
	Capacity CAPEX	MUSD	Confidential		-
	Annual OPEX	% of CAPEX	Confidential	-	-
	Electricity use	kWh/kgH ₂	Confidential	-	-
Conversion ⁴	Installed capacity	kt⊤ol/y	-	5500	-
	Plant CAPEX	USD million		270	
	Annual OPEX	% of CAPEX	-	4%	-
	Electricity use	kWh/kgH₂	-	1.5	-
	Natural gas use	kWh/kgH ₂		0.2	
	Start-up toluene	kt	-	500	-
	Toluene cost	USD/tTol	-	400	-
	Toluene markup	kt _{⊤ol} /y	-	200	-
Reconversion ⁵	Capacity	kt carrier	-	5500	2000
	CAPEX	USD million	-	890	660
	Annual OPEX	% of CAPEX	-	4%	4%
	Heat required	kWh/kgH₂	-	13.6	9.7
	Plant power	kWh/kgH ₂	-	0.4	-
	H ₂ purification (PSA) power	kWh/kgH₂	-	1.1	1.5
	H ₂ recovery rate	%	-	90%	99%
	PSA H ₂ recovery rate	%	-	98%	85%

¹ Ship carrying liquid hydrogen and ammonia use carrier gas for propulsion; LOHC ship uses heavy fuel oil. It is assumed that fuel consumption can be obtained from carrier gas in the storage tank, so the fuel for the ship would not incur an additional energy penalty.

² The boil-off gas is the gas that spontaneously evaporates from liquefied gas at extremely low temperatures

³ The flash rate is the rate of loss that occurs upon each loading/unloading of cryogenic liquefied gas.

⁴ Conversion: LOHC = Toluene +H2 \rightarrow MCH. Toluene mark-up is the quantity of new toluene required reach year. Data for ammonia conversion are included in the table on ammonia production above.

⁵ Reconversion: LOHC = MCH \rightarrow Toluene + H₂; Ammonia = NH₃ \rightarrow N₂ +H₂.

Notes: PSA = Pressure swing adsorption. System lifetime assumed to be 30 years, unless stated otherwise; utilisation of production, conversion and reconversion capacity = 90%.

Sources: IAE (2016), "Institute of Applied Energy (Japan) data based on "Economical Evaluation and Characteristic Analyses for Energy Carrier Systems (FY 2014–FY 2015) Final Report"; ETSAP (2011), *LOHC Ship Cost from: Oil and Natural Gas Logistics*; IMO (2014), *Third IMO Greenhouse Gas Study 2014*.

Trucks

Technology	Parameter	Units	Hydrogen	LOHC	Ammonia
Trucks	Depreciation period	years	12		12
	CAPEX	kUSD	LH ₂ : 1000 GH ₂ : 620		410
	Annual OPEX	% of CAPEX	5		5
	Speed	km/h	50		50
	Driver cost	USD/h	23		23
	Net capacity	kgH ₂	LH ₂ : 4300		2600
			GH2: 1000		
	Loading / Unloading time	hrs	LH2: 3 GH2: 1.5		1.5

Note: LH_2 = liquid hydrogen. GH_2 = gaseous hydrogen. The costs of compressing or liquefying hydrogen before transport, or to convert it to liquid carriers (incl. ammonia) are given in the tables above for pipeline or ship transport. Sources: Reuß, M. et al. (2017), "Seasonal storage and alternative carriers: A flexible hydrogen supply chain model"; Reuß et al. (2019), "A hydrogen supply chain with spatial resolution: Comparative analysis of infrastructure technologies in Germany".

References

- Agora Verkehrswende, Agora Energiewende and Frontier Economics (2018): The Future Cost of Electricity-Based Synthetic Fuels, <u>The Future Cost of Electricity-Based</u> <u>Synthetic Fuels (agora-energiewende.de)</u>.
- Baufumé, S. et al. (2013), "GIS-based scenario calculations for a nationwide German hydrogen pipeline infrastructure", *International Journal of Hydrogen Energy*, Vol. 38, pp. 3813–29, <u>http://dx.doi.org/10.1016/j.ijhydene.2012.12.147</u>.

Consultation with McKinsey & Company and the Hydrogen Council

- Danish Energy Agency, Technology Data for Renewable Fuels, 2021, <u>Technology Data for</u> <u>Renewable Fuels | Energistyrelsen (ens.dk)</u>.
- Element Energy (2018), "Hydrogen supply chain evidence base, November 2018", <u>https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachmen</u> <u>t_data/file/760479/H2_supply_chain_evidence_-publication_version.pdf</u>.
- Fuel Cells and Hydrogen Joint Undertaking (FCH JU) (2015), Advancing Europe's energy systems: Stationary fuel cells in distributed generation. <u>https://www.fch.europa.eu/sites/default/files/FCHJU_FuelCellDistributedGenerationCom</u> <u>mercialization_0.pdf</u>.
- Fuel Cells and Hydrogen Joint Undertaking (FCH JU) (2019), Study on Value Chain and manufacturing Competitiveness Analysis for Hydrogen and Fuel Cell Technologies. <u>https://www.fch.europa.eu/sites/default/files/Evidence%20Report%20v4.pdf</u>.
- IEA (International Energy Agency) (2019a), *Global EV Outlook 2019: Accelerating ambitions despite the pandemic*, <u>https://www.iea.org/reports/global-ev-outlook-2021</u>.
- IEAGHG (IEA Greenhouse Gas R&D Programme) (2017), "Techno-economic evaluation of SMR based standalone (merchant) hydrogen plant with CCS", 2017/02, February 2017, <u>https://ieaghg.org/exco_docs/2017-02.pdf</u>.
- IEAGHG (2014), "CO₂ capture at coal based power and hydrogen plants", <u>https://ieaghg.org/docs/General_Docs/Reports/2014-03.pdf</u>.

Kawasaki Heavy Industries, <u>成果報告書 2012年6月 (nedo.go.jp)</u>.

- Reuß, M. et al. (2017), "Seasonal storage and alternative carriers: A flexible hydrogen supply chain model", *Applied Energy*, Vol. 200, pp. 290–302, <u>http://dx.doi.org/10.1016/j.apenergy.2017.05.050</u>.
- Reuß, M. et al. (2019), "A hydrogen supply chain with spatial resolution: Comparative analysis of infrastructure technologies in Germany", *Applied Energy*, Vol. 247, pp. 438–53, <u>https://doi.org/10.1016/j.apenergy.2019.04.064</u>.

This publication reflects the views of the IEA Secretariat but does not necessarily reflect those of individual IEA member countries. The IEA makes no representation or warranty, express or implied, in respect of the publication's contents (including its completeness or accuracy) and shall not be responsible for any use of, or reliance on, the publication. Unless otherwise indicated, all material presented in figures and tables is derived from IEA data and analysis.

This publication and any map included herein are without prejudice to the status of or sovereignty over any territory, to the delimitation of international frontiers and boundaries and to the name of any territory, city or area.

IEA. All rights reserved. IEA Publications International Energy Agency Website: www.iea.org Contact information: www.iea.org/about/contact

Typeset in France by IEA - January 2022 Cover design: IEA