

Grid integration of electric vehicles: A manual for policy makers

Luis Lopez, Energy Analyst, Renewables Integration and Secure Electricity Unit, IEA 14 Dec 2022

(1) Prepare institutions for the electric mobility transition

(2) Assess the power system impacts

(3) Deploy measures for grid integration

(4) Improve planning practices

1. Prepare institutions for the electric mobility transition

4.1, 4.2 Engage stakeholders and break silos of planning and policy

Key recommendations

Designate contact persons in charge of cross-sectoral coordination Create multidisciplinary working groups

 <u>California VGI Working</u> <u>Group</u> Establish co-operation at the policy-making level

 US Joint office of Energy and Transportation

2. Assess power system impacts

Determine vehicle electrification priorities

Different vehicle types and segments imply different charging solutions. Policy makers must identify electrification priorities to determine their grid impacts

lea

Grid impacts of charging solutions can vary based on local contexts. Modelling them should consider mobility scenarios to ensure a robust planning

Key recommendations

Mobility scenarios

- By transmission operator (<u>France</u>)
- By national lab (<u>United</u> <u>States</u>)

Travel surveys

- Travel surveys (<u>Chile</u>, <u>Thailand</u>)
- EV charging patterns (<u>France</u>)

Digital Technologies

 GPS in LDVs and in Trucks (<u>United States</u>, <u>Europe</u>)

Record charging sessions + open access

 Obligation in public tender (<u>Germany</u>)

IEA, CC BY 4.0.

Page 9

3. Deploy measures for grid integration

Mitigating the impacts of lowering barriers to e-mobility

Locational signals

- Hosting capacity maps (<u>New Jersey</u> <u>New York</u> and <u>California</u>)
- Variable fees by location, storage requirements

Influencing connection

Variable fees

 Based on maximum power and controllability (proposed, <u>Netherlands</u>)

Non-firm connection

 Lower fees for "flexible connection" (DNO in <u>United</u> <u>Kingdom</u>)

3.2 Facilitate aggregation by enforcing standards and interoperability

Several charging standards and communication protocols exist between different interfaces. Enforcing interoperability addresses the user's range anxiety, and increases the volume of aggregated vehicles

Incentives

- Tax deductions for residential and commercial EVSE (OCPP in <u>Belgium</u>)
- Grant for charging stations (OCPP in <u>Luxembourg</u>)

Regulations

- Public tender guidelines (OCPP and OCPI in the <u>Netherlands</u>)
- Charging regulations (OCPP in the <u>UK</u> and in <u>India</u>)

3.3 Value the flexibility of EVs

Tariff Design

- Time of Use (EV-specific in Korea)
- Real-time pricing
- Critical peak pricing (<u>United</u> <u>States</u>)

Flexibility Contracts and Markets

 Local flex markets (<u>UK</u>, <u>Germany, Italy, Netherlands,</u> <u>Switzerland</u>)

Wholesale + Balancing Markets

- Through aggregators (<u>UK</u>)
- Adjusting product specifications (100 kW minimum in <u>Sweden</u> for primary regulation)

3.4 Co-ordinate EV charging with renewables

Encourage daytime charging

 Work place charger incentives (<u>UK</u>, <u>US</u>)

Incentives

 RE supplier or on-site generation (<u>Belgium</u>)

Options to directly contract RE supply

 Lowering size requirements (1 to 0.1 MW in <u>India</u>)

A framework for grid integration of electric vehicles

PHASE 1: No noticeable impact	PHASE 2: EV load noticeable with low flexibility demand	PHASE 3: Flexible EV load is significant with high flexibility demand	PHASE 4: Flexible EV load is highly available with high flexibility demand
No significant impact yet. Encourage higher EV uptake through incentives and public EVSE deployment.	Distinct variability observed caused by EV charging but demand for flexibility is low enough that simple flexibility measures would suffice.	Demand for flexibility is high, matching the availability of flexible EV load and paving the way for aggregated smart charging.	High flexibility demand along with highly available flexible EV load can provide energy back to the system in periods of deficit.
Co-ordinate charging station deployment in areas beneficial to the grid	Passive measures: time- of-use tariffs, vehicle-based charging time delays	Deploy active measures: unidirectional V1G	Deploy active measures, bidirectional charging: V2G
	Norway	France, Netherlands, United States	Island power systems, certain vehicle segments

A framework for grid integration of electric vehicles

PHASE 1: No noticeal impact	ble	PHASE 2: EV load noticeable with low flexibility demand	PHASE 3: Flexible EV load is significant with high flexibility demand		PHASE 4: Flexible EV load is highly available with high flexibility demand
Co-ordinate charging sta deployment in areas benef the grid	ation ficial to	Passive measures: time-of-use tariffs, vehicle-based charging time delays	Deploy active unidirectio	e measures: onal V1G	Deploy active measures, bidirectional charging: V2G
EV-EVSE interface standard and interoperability meas	disation sures	Hourly metering or sub-hourly metering	Real-time advanced metering and communications infrastructure		Battery state-of-health measurements
Database for EV registratio charging points	ons and	Separate metering for EVs or onboard charging measurement devices	Forecasting of EV availability, electricity prices, VRE generation and grid constraints		Enable platforms for decentralised power trading
Data collection of travel and		Enable data exchange platforms for grid operators, EMSPs, OEMs, CPOs and	Grid code defir	nition for V1G	Battery state-of-health considerations for V2G cycling
		EV users	Real-time tariffs		Bidirectional protocols: ISO-15118- 20:2022, CHAdeMO
Frameworks to incentivise demand response		EV-EVSE-grid standardisation of communication protocols	Contracts and mar	kets for flexibility	Reducing or eliminating two-way
	Time-of-use or critical peak tariffs	Market access fo	or aggregators	taxation for storage	
				Grid code definition for V2G	
	(Self-consumption policies			
IEA. CC BY 4.0. Chargin	ng strategy	Technology requirements	System operations	Regulation and mar design	ket Page 1

4. Improve planning practices

4.1 Pro active grid planning

Streamline interconnection

- Mandating publication of hosting capacity maps
- Minimum connection time windows (<u>Netherlands</u>)

Source: PSE&G. EV Hosting Capacity Map (accessed 3 August 2022).

Targets and regulatory incentives

 Clear deployment targets (<u>Mobility</u> <u>Orientation Law</u> in France)

4.2 Reflect full value of EV charging

Grid expansion criteria

- Non-wire alternatives such as energy efficiency, and demand response programmes (<u>New</u> <u>York</u>)
- Distribution Deferral Opportunity Report (<u>California</u>)

System planning criteria

• From deterministic

• To holistic and probabilistic

4 key steps for policy makers to successfully integrate EVs

(1) Prepare institutions for the electric mobility transition

- 1. Engage electric mobility stakeholders
- 2. Break silos in planning and policy making

(3) Deploy measures for grid integration

1. Accommodate all charging solutions but encourage managed charging

2. Facilitate aggregation by enforcing standards and interoperability

3. Value the flexibility of EVs

- 4. Co-ordinate EV charging with renewables
- 5. Incentivise smart-readiness

(2) Assess the power system impacts

- 1. Define an electric mobility strategy
- 2. Gather data and develop insights
- 3. Assess the grid impacts under mobility scenarios

(4) Improve planning practices

- 1. Conduct proactive grid planning
- 2. Reflect the full value of EV charging

Full Report

Grid Integration of Electric Vehicles: A Manual for Policy Makers

https://www.iea.org/reports/grid-integration-

of-electric-vehicles