

EV Charging and Grid Integration Tool

Workshop for the Africa Support and Investment Platform for E-mobility, 31 August 2023

Javier JORQUERA COPIER, Energy Analyst, Renewable Integration and Secure Electricity Unit

gef.emobility.wg4@iea.org

International Energy Agency

Outline

- Grid integration of EV: manual for policy makers
- EV Charging and Grid Integration Tool
- Q&A

Grid integration of EV: Manual for policy makers

4 key steps for policy makers to successfully integrate EVs

(1) Prepare institutions for the electric mobility transition

- 1. Engage electric mobility stakeholders
- 2. Break silos in planning and policy making

(3) Deploy measures for grid integration

1. Accommodate all charging solutions but encourage managed charging

2. Facilitate aggregation by enforcing standards and interoperability

3. Value the flexibility of EVs

- 4. Co-ordinate EV charging with renewables
- 5. Incentivise smart-readiness

(2) Assess the power system impacts

- 1. Define an electric mobility strategy
- 2. Gather data and develop insights
- 3. Assess the grid impacts under mobility scenarios

(4) Improve planning practices

- 1. Conduct proactive grid planning
- 2. Reflect the full value of EV charging

A framework for grid integration of electric vehicles

PHASE 1: No noticeable impact	PHASE 2: EV load noticeable with low flexibility demand	PHASE 3: Flexible EV load is significant with high flexibility demand	PHASE 4: Flexible EV load is highly available with high flexibility demand
No significant impact yet. Encourage higher EV uptake through incentives and public EVSE deployment.	Distinct variability observed caused by EV charging but demand for flexibility is low enough that simple flexibility measures would suffice.	Demand for flexibility is high, matching the availability of flexible EV load and paving the way for aggregated smart charging.	High flexibility demand along with highly available flexible EV load can provide energy back to the system in periods of deficit.
Co-ordinate charging station deployment in areas beneficial to the grid	Passive measures: time- of-use tariffs, vehicle-based charging time delays	Deploy active measures: unidirectional V1G	Deploy active measures, bidirectional charging: V2G
	Norway	France, Netherlands, United States	Island power systems, certain vehicle segments

Interactive web tool: **EV Charging and Grid Integration tool** <u>http://www.iea.org/</u> <u>data-and-statistics/data-tools/</u> <u>ev-charging-and-grid-integration-tool</u>

Report (December 2022) Grid Integration of Electric Vehicles: A Manual for Policy Makers <u>https://www.iea.org/</u> <u>reports/</u>

grid-integration-of-electric-vehicles

Menti question – code 2736 4634 (www.menti.com)

Global EV electricity demand equals to total national consumption of...

La demande en électricité de la flotte mondiale de véhicules électriques équivaut à la consommation nationale de...

EV charging and grid integration tool

EV Charging and grid integration tool

Motivation #1

Assessing the impact of EV charging on the power system

Module 1

Simulation of EV charging behaviour

Output: weekly EV charging demand profile

Motivation #2

Assessing effect of measures for mitigating EV charging impacts

Module 2

Simulation of EV charging behaviour with managed charging

Output: weekly EV charging demand profile with managed charging

Motivation #3

Estimating the CO₂ emissions related to EV charging

Module 3

Simplified representation of the electricity mix

Output: calculation of yearly CO2 emissions

Main tool output: detailed simulation of weekly demand profile

Motivation #1 (Module 1)

Assessing the impact of EV charging on the power system

EVs can be charged at several types of locations

Many factors influence the profile of electricity demand by EV

Grid impacts of charging solutions vary based on EV fleet and electricity system characteristics.

Ex: 100 buses – base example

Ex: 1000 cars

Ex: 1000 cars – lower access to home/depot charging

Ex: 1000 cars overlapped with 100 buses

Motivation #2 (Module 2)

Implementing managed (more flexible) charging

Road transport electrification: from challenges to opportunities

Managed (flexible) charging unlocks demand flexibility, reduces peak demand and grid congestions, and accelerates electricity decarbonisation.

led

Applying managed charging measures

Ex: 1000 cars – applying balanced charging

Ex: 1000 cars – applying Time-of-Use tariffs

Ex: 1000 cars – applying V1G

Motivation #3 (Module 3)

Estimating the CO2 emissions related to EV charging

EV charging emissions depend on power mix at time of charging

Ex: 1000 cars – CO2 emissions estimates

Interactive web tool: **EV Charging and Grid Integration tool** <u>http://www.iea.org/</u> <u>data-and-statistics/data-tools/</u> <u>ev-charging-and-grid-integration-tool</u>

Report (December 2022) Grid Integration of Electric Vehicles: A Manual for Policy Makers <u>https://www.iea.org/</u> <u>reports/</u>

grid-integration-of-electric-vehicles

Q&A

IEA. All rights reserved.

Thank you for your attention.

Thank you to all contributors:

- Tool specifications: Luis Lopez, Jacques Warichet
- Algorithm developers: Luis Lopez, Juha Koÿkka, Woan Ho Park, Andreas Bong
- Digital support (web tool and API): Barbara Moure, Jon Custer
- Guidance and review: Per-Anders Widell, Julia Guyon, Javier Jorquera Copier, Shane McDonagh, Elizabeth Connelly, Brendan Reidenbach, Alejandro Hernandez, Pablo Hevia-Koch

