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Technology Adoption Lifecycle Curve for
Lithium-lon Battery Manufacturing Technologies
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will be flatter as technology improves battery life
L applications. J
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Waste management hierarchy

Pravention
Range of recycling technologies
Re-use o .
- Advanced battery recycling: automated disassembly
) : "Mixing' of Armaunt of Valua of
Recycling m;;mg materials matearials materials
streams recoverad recoverad
Recovery s o Prasent battery recycling: shredding, pyrometallurgy
Disposal
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Adoption of Innovation

Adoption Curves for Different Lithium lon Battery Technologies
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Ultimately, there will be “leakage” from
the circular economy and not all battery
material will end up being recycled. This
may be through incorrect disposal, ending
up in a geographical territory with poor
waste management practices, contained
in larger devices which are incorrectly
disposed of e.t.c.

Successive generations of battery technology
will deliver equivalent performance but with
decreased quantities of critical materials

The adoption curves for various
recycling technologies will lag the
production of batteries, asthe
majority of the volume of cells are
tied up inthe “use phase(s)"
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i) Internal Combustion Engine Vehicle End of Life Recycling
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iii) Future Smart Electric Vehicle End of Life Recycling
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between cells

compression

pouch cells, adhesives may
also be usedto provide

In pack designs that employ

0
8
8
B
=
.w
kY
]

ionis

funct

ded by the cell can.

Iscompression
provi

th

Cell to cell

connection

T hermal interface

meterials.

hicle crash

performance.

Sructural adhegves

[mprove ve

esve

Battery Pack Sealing
Gasket Adh

Thermally conductive

met, aids thermal

conduction, damps

vibration, secures

components
Potting connectors/

insulation.
neleiele]
SO00
COCO0
lainle!
elelaiele]

electri
O
]
O
L]
lele)

d thermel

between cells

ing an

IX

Cell f
conduct

1on

iXing.

Cell location and f




COMPLEXITY AND
VARIATION IN
ELECTRIC VEHIGLE
PACK DESIGN

Cylindrical Prismatic

Tesla model S 85 Mk1 kWh battery pack BMW i3 Mk1 22-kWh battery pack

Panasonic Samsung/SDI

375V 3552V

530 kg 235 kg

Pack

e SN 263 mm
A

16 modules per pack 8 modules per pack

25 kg 245kg
A -~
7% mm \J o >
* - 150 mm k §
Module 4 W
'~ .
311 mm _pw_ 360 men
@
444 cells per module 12 cells per module -~ :
Q18 mm —» «
4 I\ 123 mm > 7.9 mm
6% mm ’
. L
Cell <
- _7\'
45 mm ™7
y 36V  NCA cathode 37V NMC cathode
- 4859 Graphite anode 2 kg Graphite anode

Pouch

Nissan Leaf Mk1 22-kWh battery pack
AESC

360V
294 kg

1,188 mm

: -~

48 modules per pack
38kg

35 mm - <
s <

.
225 mm e 303 mm

<

4 cells per module " \

260 mm

3.75V LMO/NMC cathode
914 g Graphite anode
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Pack Disassembly

Nissan Leaf
Mk1 22kWh
Battery Pack

Module Disassembly

48 Modules

Per Pack

Removal of wiring looms tricky

Manipulation of connectors (especially where
locking tabs fitted)

High voltages until wiring loom / module links
removed

Lack of data on module condition in many
present EV batteries

Lack of labelling and identifying marks
Potential fire hazards

Potential HF off-gassing

Sealants may be used in module manufacture
(difficult to remove)

Cells stuck together in modules with adhesives
(difficult to separate)

Components may be soldered together
(difficult to separate)

Module state of charge may not be known

Resousces, Conservation & Recycling 175 (2021) 105741

FILSEVIER journal homepage: www._elsevier. com/ocate/resconrec

Contents listz available at ScienceDirect

Resources, Conservation & Recycling

Full length article M
To shred or not to shred: A comparative techno-economic assessment of T

lithium ion battery hydrometallurgical recycling retaining value and
improving circularity in LIB supply chains

Dana Thompson *
Paul A. Anderson %, Gavin D.J. Harper =%

°, Charlotte Hyde®, Jennifer M. Hartley =, Andrew P. Abbott™ s,

Cell Disassembly

4 Cells Per
Module

e (Clean separation of anodes and cathode for direct
recycling difficult.

* Very finely powdered materials present risks
(nanoparticles)

e Potential for HF compounds formed from electrolyte

e Potential for thermal effects if cells shorted during
disassembly

e Chemistries not always known / proprietary

e Additional challenges with cylindrical cells
(unwinding spiral)

e Disassembly of stacked structure with encapsulated
anodes.

1"HH
\M_M

OMPLEXITY IN EV
PACK DISASSEMBLY
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Schematic diagram of an idealised vs. a real battery recycling process.
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Electrode tabs on opposing
ends of pouch cells, could Stack of electrodes
be used to separate them | removed from

cleanly and efficiently. battery module

LITHIUM ION
BATTERY
RECYCLING
USING HIGH

e i
INTENSITY = |
ULTRASONICATION

Cathode
(aluminium foil)

_.E notrode

Ultrasound separates the .
active material from the 4.
supporting foil

| Metal
"Etive Material Foil



‘Switchable’
Adhesive Adhering
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Stimulus

Normal Adhesion Adhesive Failure Cohesive Failure

Substrate Failure [Interfacial fracture]
(The substrate and (changing the
adhesive do not (changing the integrity of the
separate) surface / over-curing adhesive)

the adhesive)

Debondable adhesives and their use in recycling Shemsty
Kira R. Mulcahy, Alexander F. R. Kilpatrick, A
Gavin D. J. Harper, and Andrew P. Abbott
Submitted to Green Chemistry el
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Application of Debonding Stimuli

Debondable adhesives and their use in recycling &emustrv
Kira R. Mulcahy, Alexander F. R. Kilpatrick, ‘
Met4Tech Gavin D. J. Harper, and Andrew P. Abbott

Submitted to Green Chemistry
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REUSE & RECYCLING OF LITHIUM ION BATTERIES ",




From the journal:

Green Chemistry

Debondable adhesives and their use in recycling

Kira R Mulcahy, Alexander F. R. Kilpatrick, Gavin Harper. Allan Walton and Andrew P Abbott

Potting
connectors /
disconnects

Cell encapsulation
J

Cell to cell " /
bonding } Z

pads

Electrical
insulation

In addition to functional adhesives, structural
adhesives are used throughout battery packs.

Pack seal
and gasket

Thermal
runaway
protection

interface
materials

In pack designs
with cylindrical
cells adhesives are
used as both a
structural fixation
and also a thermal
interface material.

(((N))) In addition to other functional properties, adhesives may also act as vibration inhibitors.




DEBONDABLE
ADHESIVES
AND THEIR USE
IN RECYCLING

From the journal:

Green Chemistry

Debondable adhesives and their use in recycling

Kira R Mulcahy, AlexanderF. R. Kilpatrick, Gavin Harper, Allan Walton and Andrew P Abbott

/Mm< Unstressed Shape Memory Alloy (Austenite)

Twinned Martensitic state after elements cooled.
Inherent stresses in the material. Adhesive separates through

cohesive failure.
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Shape memory alloy separates
adhesive bond from within.
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Fibres incorporated into fabric embedded in
adhesive matrix.

‘90

{ Detwinned Martensitic state after deformation.

)

2,
s

Adhesive bond fractured
by application of heat.

Shape memory alloy fibres /
fabric are impregnated into the
adhesive in the Martensitic state.

Applied heat causes SMA to
return to Austenitic state.

Shape ,/ \ Shape change breaks
Memory / ‘\ adhesive bond.
Alloy /’ \

Austenite
(unstressed)

Detwinned Martensite
(stressed)

Heating

Body centred
(8CC)

Face centred
(FCC)

Deformation

Twinned Martensite
(stressed)

® Nickel
Body centred

Lo @ Titanium

Polymeric nanocapsules The gas migrates
containing an additive are to the surface
embedded throughout the causing the

adhesive. The additive adhesive to
L evolves gas with heat. J expand and foam.

Gas bubbles at the
interface damages the
adhesive bonds.

/
Additive evaporates / /.
decomposes releasing gas
on thermal treatment.

MCH /
PMMA /

Gas escapes
from polymeric
nanocapsules.

Polymeric
nanocapsules

(Bubble gaps of evaporated gas form. \
Gas moves through the adhesive
causing volume expansion and foaming.

Adhesive thin film

Anodic
metal
\substrate,
. E
Adhesive]
with Electrical
cationic - stimulus
additive J : H
f S 5 In the case of
cf:::::z:ive S £ | ElectRelease™
Cations in ionic liquid £ Adhesive, the movement of
substrate -3 sl tions awat
potential is 50VDC = Y
Adhesive formulated 3 ; from the
i o flow leads to electrochemical o Ereais
to have slight ionic !, & 3
it reactions at the interfaces. the metal-
conductivity when A % 3
This triggers interfacial adhesive
cured. 1
L debonding. bond.
Where two non conductive Non conductive substrate
substrates are to be joined, an Conventional adhesive

intermediate conductive

substrate is bonded using Conventional adhesive

Non ive substrate




Digitalisation of Lithium
lon Battery Recycling

Artificlal
Intelligence
Machine
Open Learning /
Standards Neural
Networks

Internet of
Things

Digital
Twins

Industry 4.0 Blockchain

Robotics / | P
Automation



Key messages

e recycling needs automation to be cost and time effective

e cell disassembly coupled with tailored short-loop/direct
recycling and upcycling processes could make recovery of
lower materials viable

e design for recycle is vital to minimize structural adhesives,
binders, connectors and retooling

e LCA and TEA can provide key information on problems with
pack/module/cell design

e novel binders and adhesives are essential in all aspects of pack
manufacture and disassembly

e process engineering is required to achieve reproducible
separation and purification

PHYSICAL BATTERY

Cell-to-pack eliminates
intermediate module stage

pack I
Module [P n

Cell Wn

Electrode
foils arranged in
“Christmas Cracker”
design, allowing anodes
and cathodes to be
separated more easily by
pulling apart during
recycling processes.

Pack designed for disassembly
and refurbishment by human
and robotic operatives.

Solid busbars are used

rather than flexible cables
as they are easier to
handle with robotic
manipulators.

As far as possible glues
and adhesives are
eschewed in favour of
mechanical fixings.

This enables easier
servicing, maintenance

Battery chemistries and the
quantities of critical materials and
their provenance are encoded into
the digital twin, aiding recyclers at

end of life and easing value i and repair.
appraisal. _
ﬂ g @ @ > B )
Machine readable a8
QR Codes / RFID Tags provide w
a link between the physical Where adhesives are impossible to
battery and digital twin. @ eliminate, consideration should be

Comparison of measured values
with modelled values in digital twin,

permits analysis of premature failure
and easier diagnosis of problems
permitting economical repair and
enabling product life extension.

Real-time state of health
evaluation, combined with
ease of disassembly / repair
enable simple identification of
components to be replaced
mid-life enabling overall pack
life extension.

Environmental -
data is logged ~
into the twin

s iven to debondable adhesives.
B
4/ g
g
- .
>

Over the use phase
vehicle and usage data
is encoded into the
digital twin so

performance can be ~ )
compared and modelled. 3

s =y - Other vehicle sensors record key
\ N

during end-of-life disposal and
potential exclusion from reuse
applications will be flagged.

DIGITAL TWIN



ReLIB technology pipeline

RECYCLING 1.0 RECYCLING 2.0 RECYCLING 3.0 RECYCLING 4.0
Redesign of cells and

Current & developing Recycling aided by desien for recvelin
Pyrometallurgy hydrometallurgical cell disassembly on 18N 16 ycling
: aiding improved
techniques current cells .
recycling processes
recovery
o (o} ()
recovery <50% 60—-80%7 >90% recovery 99%+ recovery
established generic materials bespoke materials necessary to adopt
technolo separation & separation & ‘design for recycle’
&y purification processes purification processes principles now

Recycling 3.0: cell disassembly coupled with bespoke separation processes
based on short loop/direct recycling and upcycling maintains value in recovered
materials streams

e brings lower value materials into play

Recycling 4.0: maximum recovery rates will require both adoption of ‘design
for recycle’ and commitment to zero-waste recycling

e materials recovery from waste streams from waste processing—biorecovery?
*pack wt%



Unlocking the potential of a circular
economy of hattery technology

critical metals requires the
development of recycling processes
and design for recycling in tandem.

Improvements in Pack / Cell Design for Recycling

DESIGN FOR RECYCLING DEVELOPS
RECYCLING TECHNOLOGY
UNCHANGED

Cell and pack design improves in the
direction of design for recycling, but
existing ‘dumb’ recycling processes are
unable to take advantage of these
developments. Recycling requires
much manual intervention and some
parts of the process remain labour
intensive. Materials efficiencies and
the full potential of a circular economy
in LIBs is not realised.

CURRENT SCENARIO

Incumbent processes dealing with
existing pack & cell designs. Challenges
with recovery rates of existing
processes which aren’t optimised as
cell chemistry changes making
economics challenging. Recycling
requires labour-intensive input at
disassembly stage which affects
economics of repair / remanufacture /
recycling. Industry scales poorly as
volumes increase.

BEST CASE SCENARIO

Improved processes processing cells
designed for repair / reuse /
remanufacture / recycle unlocks the
synergies of a Circular Economy in LIBs.
Industry scales well to suit new market
conditions as pack volumes increase
massively. Manual labour in repair /
remanufacture / recycling reduced
significantly through automated pack
diagnostics and disassembly. Processes
suited to new evolving chemistries.

CELL / PACK DESIGN UNCHANGED
RECYCLING PROCESSES DEVELOP

Recycling processes improve
incrementally, but pack / cell design
remains relatively unchanged. Some
degree of automation can be applied

to existing pack / cell designs, but
unoptimized designs require more time
for disassembly / processing and
materials utilisation / recovery rates
are lower than what they would be
with an optimised DfR pack design.

Improvements in Recycling Processes



Geospatial
Modelling for
Optimisation of
Industrial
Gonfiguration

Applied Energy

YVolume 321, 1 September 2022, 119230

Optimising the geospatial configuration of'a
future lithium ion battery recycling industry in
the transition to electric vehicles and a circular
economy *

Wiet Mguyen-Tien * &, Qiang Dai , Gavin D.). Harper & %= 2 & Paul A. Anderson & 4., Robert .R. Elliott b 4. 5

DISTRIBUTION OF EVs
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Sales Approximated

COLLECTION & PRETREATMENT
FACILITIES

Average distances travelled
between end of life vehicle users
and Authorised Treatment Facilities
modelled in Geospatial Supply
Chain model. Impacts of trancport
modelled in Everbatt. \

BATTERY MANUFACTURING
MODELLED IN EVERBATT

Module Manufacture
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Recycling

Number of collection and
pretrestment plants assumed to
follao existing geographic
distribution  pattern of ELV
trestment facilities, from data
held by Scottish Envircnment
Protection Agency, Environment
Agency, Natural Resources Wales,
Northern Environment
Agency

reland

DIVERSION FROM END-OF-LIFETO
SECOND LIFE AP 5

Secend Life Application
e.g. Stationary
Grid Energy Storage

End-0f-Life
In
Second Life
Application




Geospatial Modelling for Optimisation of Industrial Gonfiguration

Optimising the Geospatial Configuration of a Future Lithium lon Battery

Recycling Industry in the Transition to Electric Vehicles and a Circular

Economy.

GABREAL: An Economic, Environmental and Geospatial Analysis of Recycling

Electric-vehicle Lithium-ion Batteries

=

S S Applied Energy
& osibhe Wolume 321, 1 September 2022, 119230 d

Optimising the geospatial configuration of a
future lithium ion battery recycling industry in
the transition to electric vehicles and a circular
economy %

Viet Nguyen-Tien * %, Qiang Dai %, Gavin D). Harper ® 2. £ & Paul A Anderson ° 4.1 Robert |.R. Elliott bds

Optimisation: 1 plant(s), year 2040

Kiomaters

Optimisation: 2 plant(s), year 2040

Optimisation: 3 plant(s), year 2040

Optimisation: 7 plant(s), year 2040 “@H_




gy between the
ated disassembly of
M lon Batteries and

I

¢ Vehicle Motors

MOTOR REMIVAL

7 Potontially high residual voitagos

— Ladk of data.on motor condibion

— Lark of lzbaling and identitying marks
— Mamsal handing harasds

— Mukipka lapors of discmsomibly

— Maotor housing nacds 1o ba removad
|— and rotor remowed from shtor

— Manual handing risks dua 1o waight

of component and high magnotic fiold
Shat must ba prossed out
using hydravic pross
Manualy, tis i another
lahour intonsive slop:

MOTOR DISASSEMBLY

PACK REMOVAL

PACK DISASSEMBLY

Bus bars
Recoverad Electronics
Components Winng loomsa
Maodules > Calls
Orther components

MODULE DISASSEMBLY
Casings
&mﬁ‘; Tci;nl:ins]s
GELL DISASSEMBLY
Cobalt

Recoverad Nickel
Matanals Lithiurn
(dapending on -
cell chemstry [~ Craphits
& recycling Manganeszs
process) Aluminium
Plastics

THE SPECIFIC CHALLEMEES AROUND RECYCLING LITHIUM-ION
BATTERIES ARE EXPLORED IN MORE DETAIL DN PAGE 113

Vanaty of wehicle shapes [ sizes
Diffarent pack configurations /
locations

Diffarant fngs  tooling required

Bolts 7 fings may ba nusted

Heads of fuings may be rounded /
shaared

Pasition of bolt heads not always faed
Vehicle bodywork may be distorted
Viehicle may be crash damaged
Wisight of battery

— Remawal of wiring looms tnicky

= Manipulation of connectors (especially
whers locking taba fitted)

— High woltages untl wirng loom / module
linka remaved

— Lack of data on module condition in many
present EV battenss

— Lack of labsling and identifying marks

— Puotential fire hazarda

— Sealnts may be usad in moduls
mamudacture (difficult to remowe)

— Cells stuck togsther in modules with
adhesives (dificult to separate)

— Componants may be soldered togather

(dificult to separate)

— Module state of charge may not be known

— Clean separation of ancdes and
cathode for direct recycling difficult

— Wary finsly powdered matenals
present nska (nanoparficles)

— Potential for HF compounds formed
from alectrolyte

— Puotential for thermal effects if calls
shorted during disassembly

— Chemistries not always known /
propnetary

~— Additional challanges with
eylindnical cells (unwinding spiral)
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