

Alternate Materials & Technologies for Clean Energy Kumar Sadayappan

Canada

CanmetMATERIALS, Energy Efficiency & Technology Sector

AGENDA

CONTEXT

- Critical Mineral Demand & Risks ۲
- Options •
- Canada's Approach •

APPLIED R&D

Innovation in Critical Minerals •

TECHNICAL REVIEW

- Substitution Opportunities •
 - Conductors
 - Magnets Ο
 - Motor Technologies

Canada

Canada

CRITICAL MINERALS ARE ESSENTIAL TO TRANSITION TOWARDS CLEAN ENERGY

ENERGY SECURITY

Synonymous with CM security

energy technologies by 2040

Quadrupling mineral supply for clean

PARIS AGREEMENT GOALS

DEMAND PREDICTED TO

OUTPACE SUPPLY

40x lithium

20-25x

nickel, graphite, cobalt, magnesium, niobium

3-7x

rare earth elements, copper, titanium, zinc

Demand by 2040 from 2020 levels

GLOBAL CRITICAL MINERALS

GI Co

GEOGRAPHICALLY CONCENTRATED

Supply & price affected by geopolitical events

SUPPLY & PROCESSING Reliance on non-likeminded states

PRICE VOLATILITY

- London Metal Exchange suspended nickel trading in March due to surging prices
 Russia is the 3rd largest
 - exporter

	Production	Processing		Production	Global Rank
REEs	60%	87%	Nickel	5%	3
Gallium	-	95%	Titanium	13%	3
Cobalt	-	65%	Vanadium	17%	2
Vanadium	-	56%	Aluminum	6%	3
			Potash	20%	2
Copper	8%	40%	Palladium	35%	2
Lithium	13%	59%	Platinum	10%	2

OPTIONS

Several pathways to address demands of energy transition, supply chain security, and economic opportunities

PRIMARY SOURCE EXTRACTION

Traditional mining: typically high cost, timelines, and environmental impact

SECONDARY SOURCE RECOVERY

Processes to recover CMs from sources such as industrial waste, brines, mine waste, end-of-life (EOL) products

MATERIAL SUBSTITUTION

Identify, develop & produce alternative materials/tech

nada

- More environmentally friendly, earth-abundant, supply-secure, and/or affordable
- Achieve the same or better properties

Canada

CANADA'S CRITICAL MINERAL STRATEGY

Starting in Budget 2022, \$3.8B in support over eight years, to implement Canada's first Critical **Minerals Strategy**. This will create thousands of good jobs, grow our economy, and make Canada a vital part of the growing global critical minerals industry. Elements include:

Public Geoscience	Indigenous Engagement & Capacity	Research & Development
	Ĺ	*
Global Partnerships	Large-Scale Demos & Deployments	Infrastructure

Canada

CanmetMATERIALS CRITICAL MINERALS R&D

Materials Science

Performance | Development | Substitution | **Recovery | Manufacturing Processes**

FOCUS

- Midstream R&D
- **18 priority Critical Minerals**
- Key value chains

RESEARCH AREAS

Battery, magnetic, and intermediate structural materials for clean technologies

anada

APPROACH

х у х х

- Vertical integration
- Accelerated material discovery
- International collaboration

Canada

Natural Resources Canada

Ressources naturelles

Material Science Theory & Processing

Machine Learning / A.I.

MATERIAL ACCELERATION PLATFORMS

Computation: Simulation & Modelling

Automation

Investing in Self-driving labs to accelerate materials discovery and development by 10X

National Research Council Canada Conseil national de recherches Canada

MATERIAL SUBSTITUTION FOR CRITICAL MINERALS

<section-header>

DEMAND FOR CONDUCTORS

GRID INFRASTRUCTURE

• Power cables

EV COMPONENTS

- Rotors
- Charging stations
- Harnesses

CONDUCTIVE MATERIALS

CURRENT SUPPLY

24.9 M tons | 20.8

M primary (2021)

PREDICTED DEMAND (2030)

36.6 M tons; supply 30.1 M T | 24 M Ton primary

 No new large mines expected

94 M tons | 69 M Primary (2022)

119 M Tons * Conductors demand 4.5 M T

- Recoverable
 resources available
 - Energy and emission intensive
 - Potential for more recycling

ALUMINUM CONDUCTORS

- Pure Al wire conductivity range: 62 65 %IACS
- Lower strength & temperature stability (compared to Cu)
- Potential replacement for Cu in traction motors
 - Lower cost
 - Supply secure
 - Mass reduction (lower density)
- Induction Motors contain AI rotors

ALLOY DEVELOPMENT

- Conductors of pure AI with small Sc additions (<0.35 wt.%) for improved strength but slightly reduced electrical conductivity are being studied
- Al-Sc binaries conducted to-date have significant strength increase (>500%) but a conductivity of about 58 %IACS
 - $_{\circ}$ AI + Sc + Ce alloys
- Development of Cu-Graphite, Al-graphite with improved conductivity

DEMAND FOR RARE EARTH ELEMENTS (REEs)

43% - PERMANENT MAGNETS

 Largest end-use application of REEs

CELLPHONES

TELEVISIONS

COMPUTERS

WIND TURBINES

ELECTRIC VEHICLES

AIRCRAFTS

DEMAND FOR RARE EARTH ELEMENTS (REEs)

NdFeB Magnets

	Symbol	Name	Typical Use	
	Sc	Scandium	AI-Sc alloys for aerospace	
	Y	Yttrium	YAG laser, YBCO high-temperature superconductor	
	La	Lanthanum	Hydrogen storage, battery electrodes, lens	
	Ce	Cerium	Hydrophobic coatings for turbine blades, oxidizing agent	
_	Sm	Samarium	Rare earth magnets, lasers, nuclear reactors	
	Pr	Praseodymium	Rare earth magnets, lasers, electric motors	
	Nd	Neodymium	Rare earth magnets, lasers, electric motors	
	Tb	Terbium	Rare earth magnets, lasers, sonar systems, fuel cells	
	Dy	Dysprosium	Rare earth magnets, lasers, hard disk drives	

PROJECTED DEMAND FOR NdFeB MAGNETS

Smith et al., "Rare Earth Permanent Magnets Supply Chain Deep Dive Assessment", U.S. DOE Response to Executive Order 14017, 2022.

- Demand will increase from 119,000 tons in 2020 to 387,000 tons in 2030, and to 753,000 tons in 2050
- Offshore wind turbines
 (36.3%) and electric
 vehicles (35.3%) will use
 the majority of NdFeB
 magnets
- Increased demand for consumer electronics and industrial motors

MAGNETIC MATERIALS

- Fe-Nd-B
- Mn-x alloys (Ga, Bi, Al)
- Fe-Ni alloys (Tetrataenite)
- Fen-N
- Fe-Co

Temperature dependence of (BH)max for most commercial permanent magnets. The value in parentheses in (BH)max at 298 K.

Ref: Jun Cui et al, Acta Materialia, 158 (2018), 118-137

MOTOR TECHNOLOGIES FOR ELECTRIC VEHICLES

DC | INDUCTION | PM | SYNCHRONOUS RELUCTANCE | COMBINATION

	PM	DC	IM	SR
Power Density	Н	L	Μ	Μ
Size	S	Μ	Μ	L
Torque	Н	Μ	Μ	н
Cost	Н	М	L	Μ

DOI:10.22581/muet1982.1903.01

INDUCTION MOTORS

Wound-Rotor Synchronous Motor, or WRSM

Jeffrey Jenkins, "Alternatives to permanent magnet motors in EV traction applications", Charged Electric Vehicles Magazine, April 13, 2023.

Use soft magnetic materials (windings) in both stator and rotor.

- No permanent magnet is needed.
- Lower power density and efficiency.

TECHNOLOGIES TO IMPROVE

- Dynamic Motor Drive (DMD) pulse density strategy as controlled by software
- In-Rotor Inductive-Excited Synchronous Motor
- Would-rotor synchronous motor (WRSM)

	Basic Rare Earth	Engineered Rare Earth Materials	Component & Systems	End Market Products & Technologies
Raw Materials Bastnäsite Monazite Ionic Clays Other	Materials Separated Rare Earth Oxides, Carbonates, Oxylates, Chlorides, & Nitrates Rare Earth Mixed Oxides Rare Earth Metals Other	Rare Earth Alloys Magnets & Magnetic Powders Catalysts Metallurgical Additives Polishing Powders Phosphors Glass Additives Ceramics Water Purification Chemicals Other	Batteries Controls Drives Fabricated Metal Products Lasers Motors & Generators Sensors Transducers Other Systems & Components	Health Care Technologies Hybrid, Electric & PHEVs & Other Vehicles HVAC and Home Appliance Systems Consumer Electronics Energy Efficient Lighting Communications & Electronics Audio Equipment Defense Technologies Other Electronics Advanced Optics &
				Other Glass Products

Oil Refining Electric Power Other

SUMMARY

SPECIFIC EXAMPLES

This presentation focused on a few applications of CMs for energy technologies

SUBSTITUTION

Alternate materials & technologies need to be developed to reduce the pressure on CMs

Canada

SUPPLY CHAIN

Entire supply chain must be considered for each material (not just the energy applications)

Canada

Ressources naturelles

Natural Resources Ressources naturelles Canada Canada

Connect with us

Kumar Sadayappan Acting Program Manager - Energy End-Use (289) 922-8567 kumar.sadayappan@nrcan-rncan.gc.ca Hitesh Jain Director of Business, Policy, & Planning (905) 906-3942 hitesh.jain@nrcan-rncan.gc.ca

21